这篇文章主要讲解了Python如何利用Faiss库实现ANN近邻搜索,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。
目前成都创新互联公司已为上千家的企业提供了网站建设、域名、网络空间、成都网站托管、企业网站设计、淮阳网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。Embedding的近邻搜索是当前图推荐系统非常重要的一种召回方式,通过item2vec、矩阵分解、双塔DNN等方式都能够产出训练好的user embedding、item embedding,对于embedding的使用非常的灵活:
然而有一个工程问题,一旦user embedding、item embedding数据量达到一定的程度,对他们的近邻搜索将会变得非常慢,如果离线阶段提前搜索好在高速缓存比如redis存储好结果当然没问题,但是这种方式很不实时,如果能在线阶段上线几十MS的搜索当然效果最好。
Faiss是Facebook AI团队开源的针对聚类和相似性搜索库,为稠密向量提供高效相似度搜索和聚类,支持十亿级别向量的搜索,是目前最为成熟的近似近邻搜索库。
接下来通过jupyter notebook的代码,给大家演示下使用faiss的简单流程,内容包括:
对于已经训练好的Embedding怎样实现高速近邻搜索是一个工程问题,facebook的faiss库可以构建多种embedding索引实现目标embedding的高速近邻搜索,能够满足在线使用的需要
安装命令:
conda install -c pytorch faiss-cpu
本文名称:Python如何利用Faiss库实现ANN近邻搜索-创新互联
新闻来源:https://www.cdcxhl.com/article42/csdjec.html
成都网站建设公司_创新互联,为您提供网站内链、定制开发、App设计、响应式网站、外贸建站、网站建设
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联