Flume架构中如何进行MemoryChannel事务实现

本篇文章给大家分享的是有关Flume架构中如何进行MemoryChannel事务实现,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

创新互联长期为1000多家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为武义企业提供专业的成都网站建设、成都网站设计武义网站改版等技术服务。拥有十年丰富建站经验和众多成功案例,为您定制开发。

Flume提供了可靠地日志采集功能,其高可靠是通过事务机制实现的。而对于Channel的事务我们本部分会介绍MemoryChannel和FileChannel的实现。

首先我们看下BasicChannelSemantics实现:

public abstract class BasicChannelSemantics extends AbstractChannel {
  //1、事务使用ThreadLocal存储,保证事务线程安全
  private ThreadLocal<BasicTransactionSemantics> currentTransaction
      = new ThreadLocal<BasicTransactionSemantics>();

  private boolean initialized = false;
  //2、进行一些初始化工作
  protected void initialize() {}
  //3、提供给实现类的创建事务的回调
  protected abstract BasicTransactionSemantics createTransaction();
  //4、往Channel放Event,其直接委托给事务的put方法实现
  @Override
  public void put(Event event) throws ChannelException {
    BasicTransactionSemantics transaction = currentTransaction.get();
    Preconditions.checkState(transaction != null,
        "No transaction exists for this thread");
    transaction.put(event);
  }
  //5、从Channel获取Event,也是直接委托给事务的take方法实现
  @Override
  public Event take() throws ChannelException {
    BasicTransactionSemantics transaction = currentTransaction.get();
    Preconditions.checkState(transaction != null,
        "No transaction exists for this thread");
    return transaction.take();
  }

  //6、获取事务,如果本实例没有初始化则先初始化;否则先从ThreadLocal获取事务,如果没有或者关闭了则创建一个并绑定到ThreadLocal。
  @Override
  public Transaction getTransaction() {

    if (!initialized) {
      synchronized (this) {
        if (!initialized) {
          initialize();
          initialized = true;
        }
      }
    }

    BasicTransactionSemantics transaction = currentTransaction.get();
    if (transaction == null || transaction.getState().equals(
            BasicTransactionSemantics.State.CLOSED)) {
      transaction = createTransaction();
      currentTransaction.set(transaction);
    }
    return transaction;
  }
}

MemoryChannel事务实现

首先我们来看下MemoryChannel的实现,其是一个纯内存的Channel实现,整个事务操作都是在内存中完成。首先看下其内存结构:

Flume架构中如何进行MemoryChannel事务实现

1、首先由一个Channel Queue用于存储整个Channel的Event数据;

2、每个事务都有一个Take Queue和Put Queue分别用于存储事务相关的取数据和放数据,等事务提交时才完全同步到Channel Queue,或者失败把取数据回滚到Channel Queue。

MemoryChannel时设计时考虑了两个容量:Channel Queue容量和事务容量,而这两个容量涉及到了数量容量和字节数容量。

另外因为多个事务要操作Channel Queue,还要考虑Channel Queue的动态扩容问题,因此MemoryChannel使用了锁来实现;而容量问题则使用了信号量来实现。

在configure方法中进行了一些参数的初始化,如容量、Channel Queue等。首先看下Channel Queue的容量是如何计算的:

try {
  capacity = context.getInteger("capacity", defaultCapacity);
} catch(NumberFormatException e) {
  capacity = defaultCapacity;
}

if (capacity <= 0) {
  capacity = defaultCapacity;
}

即首先从配置文件读取数量容量,如果没有配置则是默认容量(默认100),而配置的容量小于等于0,则也是默认容量。

接下来是初始化事务数量容量:

try {
  transCapacity = context.getInteger("transactionCapacity", defaultTransCapacity);
} catch(NumberFormatException e) {
  transCapacity = defaultTransCapacity;
}
if (transCapacity <= 0) {
  transCapacity = defaultTransCapacity;
}
Preconditions.checkState(transCapacity <= capacity,
"Transaction Capacity of Memory Channel cannot be higher than " +
        "the capacity.");

整个过程和Channel Queue数量容量初始化类似,但是最后做了前置条件判断,事务容量必须小于等于Channel Queue容量。

接下来是字节容量限制:

try {
  byteCapacityBufferPercentage = context.getInteger("byteCapacityBufferPercentage", defaultByteCapacityBufferPercentage);
} catch(NumberFormatException e) {
  byteCapacityBufferPercentage = defaultByteCapacityBufferPercentage;
}
try {
  byteCapacity = (int)((context.getLong("byteCapacity", defaultByteCapacity).longValue() * (1 - byteCapacityBufferPercentage * .01 )) /byteCapacitySlotSize);
  if (byteCapacity < 1) {
    byteCapacity = Integer.MAX_VALUE;
  }
} catch(NumberFormatException e) {
  byteCapacity = (int)((defaultByteCapacity * (1 - byteCapacityBufferPercentage * .01 )) /byteCapacitySlotSize);
}

byteCapacityBufferPercentage:用来确定byteCapacity的一个百分比参数,即我们定义的字节容量和实际事件容量的百分比,因为我们定义的字节容量主要考虑Event body,而忽略Event header,因此需要减去Event header部分的内存占用,可以认为该参数定义了Event header占了实际字节容量的百分比,默认20%;

byteCapacity:首先读取配置文件定义的byteCapacity,如果没有定义,则使用默认defaultByteCapacity,而defaultByteCapacity默认是JVM物理内存的80%(Runtime.getRuntime().maxMemory() * .80);那么实际byteCapacity=定义的byteCapacity * (1- Event header百分比)/ byteCapacitySlotSize;byteCapacitySlotSize默认100,即计算百分比的一个系数。

接下来定义keepAlive参数:

try {
  keepAlive = context.getInteger("keep-alive", defaultKeepAlive);
} catch(NumberFormatException e) {
  keepAlive = defaultKeepAlive;
}

keepAlive定义了操作Channel Queue的等待超时事件,默认3s。

接着初始化Channel Queue:

if(queue != null) {
  try {
    resizeQueue(capacity);
  } catch (InterruptedException e) {
    Thread.currentThread().interrupt();
  }
} else {
  synchronized(queueLock) {
    queue = new LinkedBlockingDeque<Event>(capacity);
    queueRemaining = new Semaphore(capacity);
    queueStored = new Semaphore(0);
  }
}

首先如果Channel Queue不为null,表示动态扩容;否则进行Channel Queue的创建。

首先看下首次创建Channel Queue,首先使用queueLock锁定,即在操作Channel Queue时都需要锁定,因为之前说过Channel Queue可能动态扩容,然后初始化信号量:Channel Queue剩余容量和向Channel Queue申请存储的容量,用于事务操作中预占Channel Queue容量。

接着是调用resizeQueue动态扩容:

private void resizeQueue(int capacity) throws InterruptedException {
  int oldCapacity;
  synchronized(queueLock) { //首先计算扩容前的Channel Queue的容量
    oldCapacity = queue.size() + queue.remainingCapacity();
  }

  if(oldCapacity == capacity) {//如果新容量和老容量相等,不需要扩容
    return;
  } else if (oldCapacity > capacity) {//如果老容量大于新容量,缩容
    //首先要预占老容量-新容量的大小,以便缩容容量
if(!queueRemaining.tryAcquire(oldCapacity - capacity, keepAlive, TimeUnit.SECONDS)) {
   //如果获取失败,默认是记录日志然后忽略
} else {
  //否则,直接缩容,然后复制老Queue的数据,缩容时需要锁定queueLock,因为这一系列操作要线程安全
      synchronized(queueLock) {
        LinkedBlockingDeque<Event> newQueue = new LinkedBlockingDeque<Event>(capacity);
        newQueue.addAll(queue);
        queue = newQueue;
      }
    }
  } else {
    //如果不是缩容,则直接扩容即可
    synchronized(queueLock) {
      LinkedBlockingDeque<Event> newQueue = new LinkedBlockingDeque<Event>(capacity);
      newQueue.addAll(queue);
      queue = newQueue;
}
//增加/减少Channel Queue的新的容量
    queueRemaining.release(capacity - oldCapacity);
  }
}

到此,整个Channel Queue相关的数据初始化完毕,接着会调用start方法进行初始化:
public synchronized void start() {
  channelCounter.start();
  channelCounter.setChannelSize(queue.size());
  channelCounter.setChannelCapacity(Long.valueOf(
          queue.size() + queue.remainingCapacity()));
  super.start();
}

此处初始化了一个ChannelCounter,是一个计数器,记录如当前队列放入Event数、取出Event数、成功数等。

之前已经分析了大部分Channel会把put和take直接委托给事务去完成,因此接下来看下MemoryTransaction的实现。

首先看下MemoryTransaction的初始化:

private class MemoryTransaction extends BasicTransactionSemantics {
  private LinkedBlockingDeque<Event> takeList;
  private LinkedBlockingDeque<Event> putList;
  private final ChannelCounter channelCounter;
  private int putByteCounter = 0;
  private int takeByteCounter = 0;
  public MemoryTransaction(int transCapacity, ChannelCounter counter) {
    putList = new LinkedBlockingDeque<Event>(transCapacity);
    takeList = new LinkedBlockingDeque<Event>(transCapacity);
    channelCounter = counter;
  }

可以看出MemoryTransaction涉及到两个事务容量大小定义的队列(链表阻塞队列)、队列字节计数器、另外一个是Channel操作的计数器。

事务中的放入操作如下:

protected void doPut(Event event) throws InterruptedException {
  //1、增加放入事件计数器
  channelCounter.incrementEventPutAttemptCount();
  //2、estimateEventSize计算当前Event body大小
  int eventByteSize = (int)Math.ceil(estimateEventSize(event)/byteCapacitySlotSize);
  //3、往事务队列的putList中放入Event,如果满了,则抛异常回滚事务
  if (!putList.offer(event)) {
      throw new ChannelException(
      "Put queue for MemoryTransaction of capacity " +
        putList.size() + " full, consider committing more frequently, " +
        "increasing capacity or increasing thread count");
  }
  //4、增加放入队列字节数计数器
  putByteCounter += eventByteSize;
}

整个doPut操作相对来说比较简单,就是往事务putList队列放入Event,如果满了则直接抛异常回滚事务;否则放入putList暂存,等事务提交时转移到Channel Queue。另外需要增加放入队列的字节数计数器,以便之后做字节容量限制。

接下来是事务中的取出操作:

protected Event doTake() throws InterruptedException {
  //1、增加取出事件计数器
  channelCounter.incrementEventTakeAttemptCount();
  //2、如果takeList队列没有剩余容量,即当前事务已经消费了最大容量的Event
  if(takeList.remainingCapacity() == 0) {
    throw new ChannelException("Take list for MemoryTransaction, capacity " +
        takeList.size() + " full, consider committing more frequently, " +
        "increasing capacity, or increasing thread count");
  }
  //3、queueStored试图获取一个信号量,超时直接返回null
  if(!queueStored.tryAcquire(keepAlive, TimeUnit.SECONDS)) {
    return null;
  }
  //4、从Channel Queue获取一个Event
  Event event;
  synchronized(queueLock) {//对Channel Queue的操作必须加queueLock,因为之前说的动态扩容问题
    event = queue.poll();
  }
  //5、因为信号量的保证,Channel Queue不应该返回null,出现了就不正常了
  Preconditions.checkNotNull(event, "Queue.poll returned NULL despite semaphore " +
      "signalling existence of entry");
  //6、暂存到事务的takeList队列
  takeList.put(event);
  //7、计算当前Event body大小并增加取出队列字节数计数器
  int eventByteSize = (int)Math.ceil(estimateEventSize(event)/byteCapacitySlotSize);
  takeByteCounter += eventByteSize;
  return event;
}

接下来是提交事务:

protected void doCommit() throws InterruptedException {
  //1、计算改变的Event数量,即取出数量-放入数量;如果放入的多,那么改变的Event数量将是负数
  int remainingChange = takeList.size() - putList.size();
  //2、	如果remainingChange小于0,则需要获取Channel Queue剩余容量的信号量
  if(remainingChange < 0) {
    //2.1、首先获取putByteCounter个字节容量信号量,如果失败说明超过字节容量限制了,回滚事务
    if(!bytesRemaining.tryAcquire(putByteCounter, keepAlive, TimeUnit.SECONDS)) {
      throw new ChannelException("Cannot commit transaction. Byte capacity " +
        "allocated to store event body " + byteCapacity * byteCapacitySlotSize +
        "reached. Please increase heap space/byte capacity allocated to " +
        "the channel as the sinks may not be keeping up with the sources");
    }
    //2.2、获取Channel Queue的-remainingChange个信号量用于放入-remainingChange个Event,如果获取不到,则释放putByteCounter个字节容量信号量,并抛出异常回滚事务
    if(!queueRemaining.tryAcquire(-remainingChange, keepAlive, TimeUnit.SECONDS)) {
      bytesRemaining.release(putByteCounter);
      throw new ChannelFullException("Space for commit to queue couldn't be acquired." +
          " Sinks are likely not keeping up with sources, or the buffer size is too tight");
    }
  }
  int puts = putList.size();
  int takes = takeList.size();
  synchronized(queueLock) {//操作Channel Queue时一定要锁定queueLock
    if(puts > 0 ) {
      while(!putList.isEmpty()) { //3.1、如果有Event,则循环放入Channel Queue
        if(!queue.offer(putList.removeFirst())) { 
          //3.2、如果放入Channel Queue失败了,说明信号量控制出问题了,这种情况不应该发生
          throw new RuntimeException("Queue add failed, this shouldn't be able to happen");
        }
      }
    }
    //4、操作成功后,清空putList和takeList队列
    putList.clear();
    takeList.clear();
  }
  //5.1、释放takeByteCounter个字节容量信号量
  bytesRemaining.release(takeByteCounter);
  //5.2、重置字节计数器
  takeByteCounter = 0;
  putByteCounter = 0;
  //5.3、释放puts个queueStored信号量,这样doTake方法就可以获取数据了
  queueStored.release(puts);
  //5.4、释放remainingChange个queueRemaining信号量
  if(remainingChange > 0) {
    queueRemaining.release(remainingChange);
  }
  //6、ChannelCounter一些数据计数
  if (puts > 0) {
    channelCounter.addToEventPutSuccessCount(puts);
  }
  if (takes > 0) {
    channelCounter.addToEventTakeSuccessCount(takes);
  }

  channelCounter.setChannelSize(queue.size());
}

此处涉及到两个信号量:

queueStored表示Channel Queue已存储事件容量(已存储的事件数量),队列取出事件时-1,放入事件成功时+N,取出失败时-N,即Channel Queue存储了多少事件。queueStored信号量默认为0。当doTake取出Event时减少一个queueStored信号量,当doCommit提交事务时需要增加putList 队列大小的queueStored信号量,当doRollback回滚事务时需要减少takeList队列大小的queueStored信号量。

queueRemaining表示Channel Queue可存储事件容量(可存储的事件数量),取出事件成功时+N,放入事件成功时-N。queueRemaining信号量默认为Channel Queue容量。其在提交事务时首先通过remainingChange = takeList.size() - putList.size()计算获得需要增加多少变更事件;如果小于0表示放入的事件比取出的多,表示有- remainingChange个事件放入,此时应该减少-queueRemaining信号量;而如果大于0,则表示取出的事件比放入的多,表示有queueRemaining个事件取出,此时应该增加queueRemaining信号量;即消费事件时减少信号量,生产事件时增加信号量。

而bytesRemaining是字节容量信号量,超出容量则回滚事务。

最后看下回滚事务:

protected void doRollback() {
    int takes = takeList.size();
    synchronized(queueLock) { //操作Channel Queue时一定锁住queueLock
      //1、前置条件判断,检查是否有足够容量回滚事务
      Preconditions.checkState(queue.remainingCapacity() >= takeList.size(), "Not enough space in memory channel " +
          "queue to rollback takes. This should never happen, please report");
      //2、回滚事务的takeList队列到Channel Queue
      while(!takeList.isEmpty()) {
        queue.addFirst(takeList.removeLast());
      }
      putList.clear();
    }
    //3、释放putByteCounter个bytesRemaining信号量
    bytesRemaining.release(putByteCounter);

    //4、计数器重置
    putByteCounter = 0;
    takeByteCounter = 0;
    //5、释放takeList队列大小个已存储事件容量
    queueStored.release(takes);
    channelCounter.setChannelSize(queue.size());
  }
}

也就是说在回滚时,需要把takeList中暂存的事件回滚到Channel Queue,并回滚queueStored信号量。

以上就是Flume架构中如何进行MemoryChannel事务实现,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。

网页标题:Flume架构中如何进行MemoryChannel事务实现
文章源于:https://www.cdcxhl.com/article32/gjhosc.html

成都网站建设公司_创新互联,为您提供网站制作网站排名网页设计公司软件开发动态网站定制开发

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

微信小程序开发