hadoop2.9.1伪分布式环境搭建以及文件系统的简单操作-创新互联

1、准备

创新互联建站坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都做网站、成都网站制作、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的南岔网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

1.1、在vmware上安装centos7的虚拟机

1.2、系统配置

配置网络

# vi /etc/sysconfig/network-scripts/ifcfg-ens33

BOOTPROTO=static

ONBOOT=yes

IPADDR=192.168.120.131

GATEWAY=192.168.120.2

NETMASK=255.255.255.0

DNS1=8.8.8.8

DNS2=4.4.4.4

1.3、配置主机名

# hostnamectl set-hostname master1

# hostname master1

1.4、指定时区(如果时区不是上海)


# ll /etc/localtime

lrwxrwxrwx. 1 root root 35 6月  4 19:25 /etc/localtime -> ../usr/share/zoneinfo/Asia/Shanghai

如果时区不对的话需要修改时区,方法:

# ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

1.5、上传包


hadoop-2.9.1.tar

jdk-8u171-linux-x64.tar

2、开始搭建环境


2.1、创建用户和组

[root@master1 ~]# groupadd hadoop

[root@master1 ~]# useradd -g hadoop hadoop

[root@master1 ~]# passwd hadoop

2.2、解压包


切换用户

[root@master1 ~]# su hadoop

创建存放包的目录

[hadoop@master1 root]$ cd

[hadoop@master1 ~]$ mkdir src

[hadoop@master1 ~]$ mv *.tar src

解压包

[hadoop@master1 ~]$ cd src

[hadoop@master1 src]$ tar -xf jdk-8u171-linux-x64.tar -C ../

[hadoop@master1 src]$ tar xf hadoop-2.9.1.tar -C ../

[hadoop@master1 src]$ cd

[hadoop@master1 ~]$ mv jdk1.8.0_171 jdk

[hadoop@master1 ~]$ mv hadoop-2.9.1 hadoop

2.3、配置环境变量


[hadoop@master1 ~]$ vi .bashrc

export JAVA_HOME=/home/hadoop/jdk

export JRE_HOME=/$JAVA_HOME/jre

export CLASSPATH=.:$JAVA_HOME/lib

export PATH=$PATH:$JAVA_HOME/bin

export HADOOP_HOME=/home/hadoop/hadoop

export HADOOP_INSTALL=$HADOOP_HOME

export HADOOP_MAPRED_HOME=$HADOOP_HOME

export HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS_HOME=$HADOOP_HOME

export YARN_HOME=$HADOOP_HOME

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin

使配置文件生效


[hadoop@master1 ~]$ source .bashrc

验证

[hadoop@master1 ~]$ java -version

java version "1.8.0_171"

Java(TM) SE Runtime Environment (build 1.8.0_171-b11)

Java HotSpot(TM) 64-Bit Server VM (build 25.171-b11, mixed mode)

[hadoop@master1 ~]$ hadoop version

Hadoop 2.9.1

Subversion https://github.com/apache/hadoop.git -r e30710aea4e6e55e69372929106cf119af06fd0e

Compiled by root on 2018-04-16T09:33Z

Compiled with protoc 2.5.0

From source with checksum 7d6d2b655115c6cc336d662cc2b919bd

This command was run using /home/hadoop/hadoop/share/hadoop/common/hadoop-common-2.9.1.jar

2.4、修改hadoop配置文件


[hadoop@master1 ~]$ cd hadoop/etc/hadoop/

[hadoop@master1 hadoop]$ vi hadoop-env.sh

export JAVA_HOME=/home/hadoop/jdk

[hadoop@master1 hadoop]$ vi core-site.xml

<configuration>

<property>

<name>fs.defaultFS</name>

<value>hdfs://192.168.120.131:9000</value>

</property>

<property>

<name>hadoop.tmp.dir</name>

<value>/data/hadoop/hadoop_tmp_dir</value>

</property>

</configuration>

说明:

fs.defaultFS:这个属性用来指定namenode的hdfs协议的文件系统通信地址,可以指定一个主机+端口,也可以指定一个namenode服务(这个服务内部可以有多台namenode实现ha的namenode服务)

hadoop.tmp.dir:hadoop集群在工作的时候存储的一些临时文件的目录

[hadoop@master1 hadoop]$ vi hdfs-site.xml

<configuration>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

</configuration>

说明:

dfs.replication:hdfs的副本数设置。也就是上传一个文件,其分割的block块后,每个block的冗余副本个数,默认配置是3。

下面的参数以配置就会出现datanode无法启动的问题,所以不做配置,尚未搞明白怎么出现的。

dfs.namenode.name.dir:namenode数据的存放目录。也就是namenode元数据存放的目录,记录了hdfs系统中文件的元数据。

dfs.datanode.data.dir:datanode数据的存放目录。也就是block块的存放目录。

下面贴出异常信息

[hadoop@master1 logs]$ pwd

/home/hadoop/hadoop/logs

[hadoop@master1 logs]$ tail -f hadoop-hadoop-datanode-master1.log

2018-06-12 22:30:14,749 WARN org.apache.hadoop.hdfs.server.common.Storage: Failed to add storage directory [DISK]file:/data/hadoop/hdfs/dn/

java.io.IOException: Incompatible clusterIDs in /data/hadoop/hdfs/dn: namenode clusterID = CID-5bbc555b-4622-4781-9a7f-c2e5131e4869; datanode clusterID = CID-29ec402d-95f8-4148-8d18-f7e4b965be4f

at org.apache.hadoop.hdfs.server.datanode.DataStorage.doTransition(DataStorage.java:760)

2018-06-12 22:30:14,752 ERROR org.apache.hadoop.hdfs.server.datanode.DataNode: Initialization failed for Block pool <registering> (Datanode Uuid f39576ae-b7af-44aa-841a-48ba03b956f4) service to master1/192.168.120.131:9000. Exiting.

java.io.IOException: All specified directories have failed to load.

at org.apache.hadoop.hdfs.server.datanode.DataStorage.recoverTransitionRead(DataStorage.java:557)

2018-06-12 22:30:14,753 WARN org.apache.hadoop.hdfs.server.datanode.DataNode: Ending block pool service for: Block pool <registering> (Datanode Uuid f39576ae-b7af-44aa-841a-48ba03b956f4) service to master1/192.168.120.131:9000

2018-06-12 22:30:14,854 INFO org.apache.hadoop.hdfs.server.datanode.DataNode: Removed Block pool <registering> (Datanode Uuid f39576ae-b7af-44aa-841a-48ba03b956f4)

2018-06-12 22:30:16,855 WARN org.apache.hadoop.hdfs.server.datanode.DataNode: Exiting Datanode

2018-06-12 22:30:16,916 INFO org.apache.hadoop.hdfs.server.datanode.DataNode: SHUTDOWN_MSG:

/************************************************************

SHUTDOWN_MSG: Shutting down DataNode at master1/192.168.120.131

[hadoop@master1 hadoop]$ cp mapred-site.xml.template mapred-site.xml

[hadoop@master1 hadoop]$ vi mapred-site.xml

<configuration>

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

</configuration>

说明:

mapreduce.framework.name:指定mr框架为yarn方式,Hadoop二代MP也基于Yarn来运行。

[hadoop@master1 hadoop]$ vi yarn-site.xml

<configuration>

<!-- Site specific YARN configuration properties -->

<!-- 指定ResourceManager的地址-->

<property>

<name>yarn.resourcemanager.hostname</name>

<value>192.168.120.131</value>

</property>

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle</value>

</property>

</configuration>

说明:

yarn.resourcemanager.hostname:yarn总管理器的IPC通讯地址,可以是IP也可以是主机名。

yarn.nodemanager.aux-service:集群为MapReduce程序提供的shuffle服务

2.5、创建目录并赋予权限


[hadoop@master1 hadoop]$ exit

[root@master1 ~]# mkdir -p /data/hadoop/hadoop_tmp_dir

[root@master1 ~]# mkdir -p /data/hadoop/hdfs/{nn,dn}

[root@master1 ~]# chown -R hadoop:hadoop /data

3、格式化文件系统并启动服务

3.1、格式化文件系统

[root@master1 ~]# su hadoop

[hadoop@master1 ~]$ cd hadoop/bin

[hadoop@master1 bin]$ ./hdfs namenode -format

注意:

如果是集群环境,HDFS初始化只能在主节点上运行

3.2、启动HDFS

[hadoop@master1 bin]$ cd sbin

[hadoop@master1 sbin]$ ./start-dfs.sh

注意:

如果是集群环境,不管在集群中的哪个节点都可以运行

如果有个别服务启动失败,配置也没有问题的话,很有可能是创建的目录权限问题

3.3、启动YARN

[hadoop@master1 sbin]$ ./start-yarn.sh

注意:

如果是集群环境,只能在主节点中运行

查看服务状态

[hadoop@master1 sbin]$ jps

6708 NameNode

6966 SecondaryNameNode

6808 DataNode

7116 Jps

5791 ResourceManager

5903 NodeManager

3.4、浏览器查看服务状态

使用web查看HSFS运行状态

在浏览器输入

http://192.168.120.131:50070

使用web查看YARN运行状态

在浏览器输入

http://192.168.120.131:8088

4、启动ssh无密码验证

上面启动服务时还需要输入用户名登录密码,如下所示:

[hadoop@master1 sbin]$ ./start-yarn.sh

starting yarn daemons

starting resourcemanager, logging to /home/hadoop/hadoop/logs/yarn-hadoop-resourcemanager-master1.out

hadoop@localhost's password:

如果想要做到无密码启动服务的话需要配置ssh

[hadoop@master1 sbin]$ cd ~/.ssh/

[hadoop@master1 .ssh]$ ll

总用量 4

-rw-r--r--. 1 hadoop hadoop 372 6月  12 18:36 known_hosts

[hadoop@master1 .ssh]$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/hadoop/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/hadoop/.ssh/id_rsa.

Your public key has been saved in /home/hadoop/.ssh/id_rsa.pub.

The key fingerprint is:

SHA256:D14LpPKZbih0K+kVoTl23zGsKK1xOVlNuSugDvrkjJA hadoop@master1

The key's randomart image is:

+---[RSA 2048]----+

|         |

|     .    |

|   .  +     |

|  o . * .    |

|  = = o S .    |

| o.=.@ * O .   |

|E.=oOoB + o    |

|oB+*oo..     |

|ooBo ..      |

+----[SHA256]-----+

一路按下enter键就行

[hadoop@master1 .ssh]$ ll

总用量 12

-rw-------. 1 hadoop hadoop 1675 6月  12 18:46 id_rsa

-rw-r--r--. 1 hadoop hadoop  396 6月  12 18:46 id_rsa.pub

-rw-r--r--. 1 hadoop hadoop  372 6月  12 18:36 known_hosts

[hadoop@master1 .ssh]$ cat id_rsa.pub >> ~/.ssh/authorized_keys

[hadoop@master1 .ssh]$ ll

总用量 16

-rw-rw-r--. 1 hadoop hadoop  396 6月  12 18:47 authorized_keys

-rw-------. 1 hadoop hadoop 1675 6月  12 18:46 id_rsa

-rw-r--r--. 1 hadoop hadoop  396 6月  12 18:46 id_rsa.pub

-rw-r--r--. 1 hadoop hadoop  372 6月  12 18:36 known_hosts

如果发现还需要输入密码才能登录,这是因为文件权限的问题,改下权限就可以

[hadoop@master1 .ssh]$ chmod 600 authorized_keys

发现可以实现无密码登录了

[hadoop@master1 .ssh]$ ssh localhost

Last login: Tue Jun 12 18:48:38 2018 from fe80::e961:7d5b:6a72:a2a9%ens33

[hadoop@master1 ~]$

当然无密登录的实现还可以用另一种方法实现

在执行完ssh-keygen之后

执行下面的命令

ssh-copy-id -i ~/.ssh/id_rsa.pub hadoop@master1

5、文件系统的简单应用及遇到的一些问题

5.1、创建目录

在文件系统中创建目录

[hadoop@master1 bin]$ hdfs dfs -mkdir -p /user/hadoop

18/06/12 21:25:31 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

列出创建的目录

[hadoop@master1 bin]$ hdfs dfs -ls /

18/06/12 21:29:55 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

Found 1 items

drwxr-xr-x  - hadoop supergroup      0 2018-06-12 21:25 /user

5.2、解决警告问题

有WARN警告,但是并不影响Hadoop正常使用。

两种方式可以解决这个报警问题,方法一是重新编译源码,方法二是在日志中取消告警信息,我采用的是第二种方式。

[hadoop@master1 ]$ cd /home/hadoop/hadoop/etc/hadoop/

[hadoop@master1 hadoop]$ vi log4j.properties

添加

#native WARN

log4j.logger.org.apache.hadoop.util.NativeCodeLoader=ERROR

可以看到效果了

[hadoop@master1 hadoop]$ hdfs dfs -ls /

Found 1 items

drwxr-xr-x  - hadoop supergroup      0 2018-06-12 21:25 /user

5.3、上传文件到hdfs文件系统中

[hadoop@master1 bin]$ hdfs dfs -mkdir -p input

[hadoop@master1 hadoop]$ hdfs dfs -put /home/hadoop/hadoop/etc/hadoop input

Hadoop默认附带了丰富的例子:包括wordcoun,terasort,join,grep等,执行下面的命令查看:

[hadoop@master1 bin]$ hadoop jar /home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9.1.jar

An example program must be given as the first argument.

Valid program names are:

aggregatewordcount: An Aggregate based map/reduce program that counts the words in the input files.

aggregatewordhist: An Aggregate based map/reduce program that computes the histogram of the words in the input files.

bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute exact digits of Pi.

dbcount: An example job that count the pageview counts from a database.

distbbp: A map/reduce program that uses a BBP-type formula to compute exact bits of Pi.

grep: A map/reduce program that counts the matches of a regex in the input.

join: A job that effects a join over sorted, equally partitioned datasets

multifilewc: A job that counts words from several files.

pentomino: A map/reduce tile laying program to find solutions to pentomino problems.

pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo method.

randomtextwriter: A map/reduce program that writes 10GB of random textual data per node.

randomwriter: A map/reduce program that writes 10GB of random data per node.

secondarysort: An example defining a secondary sort to the reduce.

sort: A map/reduce program that sorts the data written by the random writer.

sudoku: A sudoku solver.

teragen: Generate data for the terasort

terasort: Run the terasort

teravalidate: Checking results of terasort

wordcount: A map/reduce program that counts the words in the input files.

wordmean: A map/reduce program that counts the average length of the words in the input files.

wordmedian: A map/reduce program that counts the median length of the words in the input files.

wordstandarddeviation: A map/reduce program that counts the standard deviation of the length of the words in the input files.

伪分布式运行MapReduce作业的方式跟单机模式相同,区别在于伪分布式方式读取的是HDFS中的文件(可以将单机步骤中创建的本地input文件夹,输出结果output文件夹都删除来验证这一点)。

[hadoop@master1 sbin]$ hadoop jar /home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9.1.jar grep input output 'dfs[a-z]+'

18/06/12 22:57:05 INFO client.RMProxy: Connecting to ResourceManager at /192.168.120.131:8032

18/06/12 22:57:07 INFO input.FileInputFormat: Total input files to process : 30

省略。。。

18/06/12 22:57:08 INFO mapreduce.Job: Running job: job_1528815135795_0001

18/06/12 22:57:23 INFO mapreduce.Job: Job job_1528815135795_0001 running in uber mode : false

18/06/12 22:57:23 INFO mapreduce.Job:  map 0% reduce 0%

18/06/12 22:58:02 INFO mapreduce.Job:  map 13% reduce 0%

省略。。。

18/06/12 23:00:17 INFO mapreduce.Job:  map 97% reduce 32%

18/06/12 23:00:18 INFO mapreduce.Job:  map 100% reduce 32%

18/06/12 23:00:19 INFO mapreduce.Job:  map 100% reduce 100%

18/06/12 23:00:20 INFO mapreduce.Job: Job job_1528815135795_0001 completed successfully

18/06/12 23:00:20 INFO mapreduce.Job: Counters: 50

File System Counters

FILE: Number of bytes read=46

FILE: Number of bytes written=6136681

FILE: Number of read operations=0

省略。。。

File Input Format Counters

Bytes Read=138

File Output Format Counters

Bytes Written=24

查看结果

[hadoop@master1 sbin]$ hdfs dfs -cat output/*

1 dfsmetrics

1 dfsadmin

把结果取到本地

[hadoop@master1 sbin]$ hdfs dfs -get output /data

[hadoop@master1 sbin]$ ll /data

总用量 0

drwxrwxrwx. 5 hadoop hadoop 52 6月  12 19:20 hadoop

drwxrwxr-x. 2 hadoop hadoop 42 6月  12 23:03 output

[hadoop@master1 sbin]$ cat /data/output/*

1 dfsmetrics

1 dfsadmin

6、开启历史服务器

历史服务器服务用来在web中查看任务运行情况

[hadoop@master1 sbin]$ mr-jobhistory-daemon.sh start historyserver

starting historyserver, logging to /home/hadoop/hadoop/logs/mapred-hadoop-historyserver-master1.out

[hadoop@master1 sbin]$ jps

19985 Jps

15778 ResourceManager

15890 NodeManager

14516 NameNode

14827 SecondaryNameNode

19948 JobHistoryServer

14653 DataNode

在初学时尽可能的把配置简单化,有助于出错后的排查。

参考:

https://www.cnblogs.com/wangxin37/p/6501484.html

https://www.cnblogs.com/xing901022/p/5713585.html

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。

文章名称:hadoop2.9.1伪分布式环境搭建以及文件系统的简单操作-创新互联
分享链接:https://www.cdcxhl.com/article30/cspjpo.html

成都网站建设公司_创新互联,为您提供自适应网站关键词优化全网营销推广小程序开发电子商务静态网站

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

搜索引擎优化