怎么使用Python构建电影推荐系统

这篇文章主要讲解了“怎么使用Python构建电影推荐系统”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用Python构建电影推荐系统”吧!

创新互联是一家集网站建设,临安企业网站建设,临安品牌网站建设,网站定制,临安网站建设报价,网络营销,网络优化,临安网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

导入数据

导入和合并数据集并创建 Pandas DataFrame

MovieLens 20M 数据集自 1995 年以来超过 2000 万的电影评级和标记活动。

# usecols 允许选择自己选择的特征,并通过dtype设定对应类型
movies_df=pd.read_csv('movies.csv', 
usecols=['movieId','title'], 
dtype={'movieId':'int32','title':'str'})
movies_df.head()

怎么使用Python构建电影推荐系统

ratings_df=pd.read_csv('ratings.csv',
 usecols=['userId', 'movieId', 'rating','timestamp'],
 dtype={'userId': 'int32', 'movieId': 'int32', 'rating': 'float32'})
ratings_df.head()

怎么使用Python构建电影推荐系统

检查是否存在任何空值以及两个数据中的条目数。

# 检查缺失值
movies_df.isnull().sum()

movieId 0

title 0

dtype: int64

ratings_df.isnull().sum()

userId 0

movieId 0

rating 0

timestamp 0

dtype: int64

print("Movies:",movies_df.shape)
print("Ratings:",ratings_df.shape)

Movies: (9742, 2)

Ratings: (100836, 4)

合并列上的数据帧 'movieId'

# movies_df.info()
# ratings_df.info()
movies_merged_df=movies_df.merge(ratings_df, on='movieId')
movies_merged_df.head()

怎么使用Python构建电影推荐系统

现在已经成功合并了导入的数据集。

添加衍生特征

添加必要的特征来分析数据。

通过按电影标题对用户评分进行分组来创建'Average Rating' & 'Rating Count'列。

movies_average_rating=movies_merged_df.groupby('title')['rating']
 .mean().sort_values(ascending=False)
.reset_index().rename(columns={'rating':'Average Rating'})
movies_average_rating.head()

怎么使用Python构建电影推荐系统

movies_rating_count=movies_merged_df.groupby('title')['rating']
.count().sort_values(ascending=True)
 .reset_index().rename(columns={'rating':'Rating Count'}) #ascending=False
movies_rating_count_avg=movies_rating_count.merge(movies_average_rating, on='title')
movies_rating_count_avg.head()

怎么使用Python构建电影推荐系统

目前已经创建了 2 个新的衍生特征。

数据可视化

使用 Seaborn 可视化数据:

  • 经过分析发现,许多电影在近 10 万用户评分的数据集上都有完美的 5 星平均评分。这表明存在异常值,我们需要通过可视化进一步确认。

  • 多部电影的评分比较单一,建议设置一个评分门槛值,以便产生有价值的推荐。

使用 seaborn & matplotlib 可视化数据,以便更好地观察和分析数据。

将新创建的特征绘制直方图,并查看它们的分布。设置 bin 大小为80,该值的设置需要具体分析,并合理设置。

# 导入可视化库
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(font_scale = 1)
plt.rcParams["axes.grid"] = False
plt.style.use('dark_background')
%matplotlib inline

# 绘制图形
plt.figure(figsize=(12,4))
plt.hist(movies_rating_count_avg['Rating Count'],bins=80,color='tab:purple')
plt.ylabel('Ratings Count(Scaled)', fontsize=16)
plt.savefig('ratingcounthist.jpg')

plt.figure(figsize=(12,4))
plt.hist(movies_rating_count_avg['Average Rating'],bins=80,color='tab:purple')
plt.ylabel('Average Rating',fontsize=16)
plt.savefig('avgratinghist.jpg')

怎么使用Python构建电影推荐系统

图1 Average Rating直方图

怎么使用Python构建电影推荐系统

图2 Rating Count的直方图

现在创建一个joinplot二维图表,将这两个特征一起可视化。

plot=sns.jointplot(x='Average Rating',
 y='Rating Count',
 data=movies_rating_count_avg,
 alpha=0.5, 
 color='tab:pink')
plot.savefig('joinplot.jpg')

怎么使用Python构建电影推荐系统

Average Rating和Rating Count的二维图

分析
  • 图1证实了,大部分电影的评分都是较低的。除了设置阈值之外,我们还可以在这个用例中使用一些更高百分比的分位数。

  • 直方图 2 展示了“Average Rating”的分布函数。

数据清洗

运用describe()函数得到数据集的描述统计值,如分位数和标准差等。

pd.set_option('display.float_format', lambda x: '%.3f' % x)
print(rating_with_RatingCount['Rating Count'].describe())
count 100836.000
mean58.759
std 61.965
min1.000
25% 13.000
50% 39.000
75% 84.000
max329.000
Name: Rating Count, dtype: float64

设置阈值并筛选出高于阈值的数据。

popularity_threshold = 50
popular_movies= rating_with_RatingCount[
rating_with_RatingCount['Rating Count']>=popularity_threshold]
popular_movies.head()
# popular_movies.shape

怎么使用Python构建电影推荐系统

至此已经通过过滤掉了评论低于阈值的电影来清洗数据。

创建数据透视表

创建一个以用户为索引、以电影为列的数据透视表

为了稍后将数据加载到模型中,需要创建一个数据透视表。并设置'title'作为索引,'userId'为列,'rating'为值。

import os
movie_features_df=popular_movies.pivot_table(
index='title',columns='userId',values='rating').fillna(0)
movie_features_df.head()
movie_features_df.to_excel('output.xlsx')

怎么使用Python构建电影推荐系统

接下来将创建的数据透视表加载到模型。

建立 kNN 模型

建立 kNN 模型并输出与每部电影相似的 5 个推荐

使用scipy.sparse模块中的csr_matrix方法,将数据透视表转换为用于拟合模型的数组矩阵。

from scipy.sparse import csr_matrix
movie_features_df_matrix = csr_matrix(movie_features_df.values)

最后,使用之前生成的矩阵数据,来训练来自sklearn中的NearestNeighbors算法。并设置参数:metric = 'cosine', algorithm = 'brute'

from sklearn.neighbors import NearestNeighbors
model_knn = NearestNeighbors(metric = 'cosine',
 algorithm = 'brute')
model_knn.fit(movie_features_df_matrix)

现在向模型传递一个索引,根据'kneighbors'算法要求,需要将数据转换为单行数组,并设置n_neighbors的值。

query_index = np.random.choice(movie_features_df.shape[0])
distances, indices = model_knn.kneighbors(movie_features_df.iloc[query_index,:].values.reshape(1, -1),
n_neighbors = 6)

最后在 query_index 中输出出电影推荐。

for i in range(0, len(distances.flatten())):
if i == 0:
print('Recommendations for {0}:n'
.format(movie_features_df.index[query_index]))
else:
print('{0}: {1}, with distance of {2}:'
.format(i, movie_features_df.index[indices.flatten()[i]],
distances.flatten()[i]))
Recommendations for Harry Potter and the Order of the Phoenix (2007):

1: Harry Potter and the Half-Blood Prince (2009), with distance of 0.2346513867378235:
2: Harry Potter and the Order of the Phoenix (2007), with distance of 0.3396233320236206:
3: Harry Potter and the Goblet of Fire (2005), with distance of 0.4170845150947571:
4: Harry Potter and the Prisoner of Azkaban (2004), with distance of 0.4499547481536865:
5: Harry Potter and the Chamber of Secrets (2002), with distance of 0.4506162405014038:

感谢各位的阅读,以上就是“怎么使用Python构建电影推荐系统”的内容了,经过本文的学习后,相信大家对怎么使用Python构建电影推荐系统这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!

文章标题:怎么使用Python构建电影推荐系统
网站链接:https://www.cdcxhl.com/article10/jchddo.html

成都网站建设公司_创新互联,为您提供手机网站建设小程序开发网站制作企业建站电子商务响应式网站

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

商城网站建设