自古兵家多谋,《谋攻篇》,“故上兵伐谋,其次伐交,其次伐兵,其下攻城。攻城之法,为不得已”,可见攻城之计有很多种,而爬墙攻城是最不明智的做法,军队疲惫受损、钱粮损耗、百姓遭殃。故而我们有很多迂回之策,谋略、外交、军事手段等等,每一种都比攻城的代价小,更轻量级,缓存设计亦是如此。
创新互联专注于企业成都营销网站建设、网站重做改版、双阳网站定制设计、自适应品牌网站建设、H5高端网站建设、商城网站开发、集团公司官网建设、成都外贸网站制作、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为双阳等各大城市提供网站开发制作服务。
为什么要设计缓存呢?
其实高并发应对的解决方案不是互联网***的,计算机先祖们很早就对类似的场景做了方案。比如《计算机组成原理》这样提到的cpu缓存概念,它是一种高速缓存,容量比内存小但是速度却快很多,这种缓存的出现主要是为了解决cpu运算速度远大于内存读写速度,甚至达到千万倍。
传统的cpu通过fsb直连内存的方式显然就会因为内存访问的等待,导致cpu吞吐量下降,内存成为性能瓶颈。同时又由于内存访问的热点数据集中性,所以需要在cpu与内存之间做一层临时的存储器作为高速缓存。
随着系统复杂性的提升,这种高速缓存和内存之间的速度进一步拉开,由于技术难度和成本等原因,所以有了更大的二级、三级缓存。根据读取顺序,绝大多数的请求首先落在一级缓存上,其次二级...
故而应用于SOA甚至微服务的场景,内存相当于存储业务数据的持久化数据库,其吞吐量肯定是远远小于缓存的,而对于java程序来讲,本地的jvm缓存优于集中式的redis缓存。
关系型数据库操作方便、易于维护且访问数据灵活,但是随着数据量的增加,其检索、更新的效率会越来越低。所以在高并发低延迟要求复杂的场景,要给数据库减负,减少其压力。
给数据库减负
1. 缓存分布式,做多级缓存
(1) 读请求时写缓存
写缓存时一级一级写,先写本地缓存,再写集中式缓存。具体些缓存的方法可以有很多种,但是需要注意几项原则:
综上所述,高耦合带来的痛,弥补的代价是很大的,所以可以借鉴Spring cache来实现,实现也比较简单,使用时一个注解就搞定了。
(2) 写缓存失败了怎么办?应该先写缓存还是数据库呢?
既然是缓存的设计,那么策略一定是保证最终一致性,那么我们只需要采用异步消息来补偿就好了。
大部分缓存应用的场景是读写比差异很大的,读远大于写,在这种场景下,只需要以数据库为主,先写数据库,再写缓存就好了。
***补充一点,数据库出现异常时,不要一股脑的catch RuntimeException,而是把具体关心的异常往外抛,然后进行有针对性的异常处理。
(3) 关于其他性能方面
缓存设计都是占用越少越好,内存资源昂贵以及太大不好维护都驱使我们这样设计。所以要尽可能减少缓存不必要的数据,有的同学图省事把整个对象序列化存储。另外,序列化与反序列化也是消耗性能的。
2. vs各种缓存同步方案
缓存同步方案有很多种,在考虑一致性、数据库访问压力、实时性等方面做权衡。总的来说有以下几种方式:
(1) 懒加载式
如上段提到的方式,读时顺便加载。为了更新缓存数据,需要过期缓存。
优点:简单直接
缺点:
懒加载式太简单了,没有自动加载,异步刷新等机制,为了弥补其缺陷,请参见接下来的两种方法。
(2) 补充式
可以在缓存时,把过期时间等信息写到一个异步队列里,后台起个线程池定期扫描这个队列,在快过期时主动reload缓存,使得数据会一直保持在缓存中,如果缓存没有也没有必要去数据库查询了。常见的处理方式有使用binlog加工成消息供增量处理。
(3) 定时加载式
这就需要有个异步线程池定期把数据库的数据刷到集中式缓存,如redis里。
3. 防止缓存穿透
缓存穿透是指查询的key压根不存在,从而缓存查询不到而查询了数据库。若是这样的key恰好并发请求很大,那么就会对数据库造成不必要的压力。怎么解决呢?
4. 热点缓存与缓存淘汰策略
有一些场景,需要只保持一部分的热点缓存,不需要全量缓存,比如热卖的商品信息,购买某类商品的热门商圈信息等等。
综合来讲,缓存过期的策略有以下三种:
(1) FIFO(First In,First Out)
先进先出,淘汰最早进来的缓存数据,一个标准的队列。
以队列为基本数据结构,从队首进入新数据,从队尾淘汰。
(2) LRU(Least RecentlyUsed)
最近最少使用,淘汰最近不使用的缓存数据。如果数据最近被访问过,则不淘汰。
(3) LFU(Least Frequently used)
最近使用次数最少的数据被淘汰,注意和LRU的区别在于LRU的淘汰规则是基于访问时间。
4. 缓存使用的一些常见问题
Q:那么应该选择用本地缓存(local cache)还是集中式缓存(Cache cluster)呢?
A:首先看数据量,看缓存更新的成本,如果整体缓存数据量不是很大,而且变化的不频繁,那么建议本地缓存。
Q:怎么批量更新一批缓存数据?
A:依次从数据库读取,然后批量写入缓存,批量更新,设置版本过期key或者主动删除。
Q:如果不知道有哪些key怎么定期删除?
A:拿redis来说keys * 太损耗性能,不推荐。可以指定一个集合,把所有的key都存到这个集合里,然后对整个集合进行删除,这样便能完全清理了。
Q:一个key包含的集合很大,redis无法做到内存空间上的均匀Shard?
A:可以简单的设置key过期,这样就要允许有缓存不***的情况;给key设置版本,比如为两天后的当前时间,然后读取缓存时用时间判断一下是否需要重新加载缓存,作为版本过期的策略。
王梓晨:物流研发部架构师,GIS技术部负责人,2012年加入京东,多年一线团队大促备战经验,负责物流研发一些部门的架构工作,专注于低延迟系统设计与海量数据处理。曾负责青龙配送分单团队,主导重构架构设计与主要研发工作,短期内提升了服务性能数十倍。还设计研发了地址配送网点分类模型,实现了配送到路区的精准化分单,降本增效,大幅提升了自动分单准确率。目前负责物流GIS部门,先后主导了国标转京标、物流可视化等项目。
【本文来自专栏作者张开涛的微信公众号(开涛的博客),公众号id: kaitao-1234567】
网站题目:多级缓存设计详解|给数据库减负,刻不容缓!
当前链接:http://www.csdahua.cn/qtweb/news9/289409.html
网站建设、网络推广公司-快上网,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网