python如何画P-R曲线
创新互联公司专注于弋江企业网站建设,成都响应式网站建设公司,购物商城网站建设。弋江网站建设公司,为弋江等地区提供建站服务。全流程按需定制开发,专业设计,全程项目跟踪,创新互联公司专业和态度为您提供的服务
Python生成P-R图需要安装第三方库matplotlib、numpy及sklearn。
推荐学习《Python教程》。
P-R曲线的生成方法:
根据学习器的预测结果对样本进行排序,排在前面的是学习器认为最可能是正例的样本,排在最后的是最不可能是正例的样本,按此顺序逐个将样本作为正例预测,则每次可以计算出当前的查全率、查准率,以查全率为横轴、查准率为纵轴做图,得到的查准率-查全率曲线即为P-R曲线。
也就是说对每个样本预测其为正例的概率,然后将所有样本按预测的概率进行排序,然后依次将排序后的样本做为正例进行预测,从而得到每次预测的查全率与查准率。这个依次将样本做为正例的过程实际上就是逐步降低样本为正例的概率的域值,通过降低域值,更多的样本会被预测为正例,从而会提高查全率,相对的查准率可能降低,而随着后面负样本的增加,查全率提高缓慢甚至没有提升,精度降低会更快。
sklearn的计算过程与定义相反是按概率从小到大递增的顺序来计算查准率与查全率的,并且分别为查准率和查全率添加了1和0。
#coding:utf-8 import matplotlib import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import precision_recall_curve from sklearn.utils.fixes import signature plt.figure("P-R Curve") plt.title('Precision/Recall Curve') plt.xlabel('Recall') plt.ylabel('Precision') #y_true为样本实际的类别,y_scores为样本为正例的概率 y_true = np.array([1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0]) y_scores = np.array([0.9, 0.75, 0.86, 0.47, 0.55, 0.56, 0.74, 0.62, 0.5, 0.86, 0.8, 0.47, 0.44, 0.67, 0.43, 0.4, 0.52, 0.4, 0.35, 0.1]) precision, recall, thresholds = precision_recall_curve(y_true, y_scores) #print(precision) #print(recall) #print(thresholds) plt.plot(recall,precision) plt.show()
网站名称:创新互联Python教程:Python如何画P-R曲线
网页地址:http://www.csdahua.cn/qtweb/news6/520256.html
网站建设、网络推广公司-快上网,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网