创新互联Python教程:python数据变换如何实现

1、数据规范化,即归一化的方法

常见方法:最小-规范化、z-score规范化、小数定标规范化

import pandas as pd
df=pd.DataFrame(A.data[:,3:6])
df.columns=A.feature_names[3:6]
#最小-规范化,支持矢量运算
(df-df.min())/(df.max()-df.min())
 
#使用sklearn中的preprocessing模块
from sklearn import preprocessing
preprocessing.minmax_scale(df)
 
#z-score规范化:结果=(数值-均值)/标准差,处理后数据的均值为0,标准差为1
(df-df.mean())/df.std()
 
#使用sklearn中的preprocessing模块
from sklearn import preprocessing
preprocessing.scale(df)
 
#小数定标规范化:常见落在[-1,1]区间,通过移动小数点的位数实现,移动位数取决于属性绝对值的值的位数
#ceil向上取整
import numpy as np
df/10**np.ceil(np.log10(df.abs().max()))

2、连续属性离散化

常见方法:分箱法(等宽法、等频法)、聚类

import pandas as pd
#等宽法,5个箱子,标签为0-4
pd.cut(df.AGE,5,label=range(5))
#等频法
pd.qcut(df.AGE,5,label=range(5))

以上就是python数据变换的实现,希望对大家有所帮助。更多Python学习指路:创新互联Python教程

本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。

网页题目:创新互联Python教程:python数据变换如何实现
本文URL:http://www.csdahua.cn/qtweb/news5/381705.html

网站建设、网络推广公司-快上网,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网