随着互联网的快速发展,大数据、云计算等技术已经成为了时代的主旋律。在这样的环境下,内存数据库的应用越来越广泛。相比于传统的磁盘数据库,内存数据库的优势在于处理速度更快、响应更及时。同时,内存数据库也具有更好的可伸缩性和更高的可用性,适用于大数据、高并发的情况。在内存数据库领域,开源软件也越来越多,那么我们该如何选择一款适合自己的开源内存数据库呢?本文将比较一下市面上几款主流的开源内存数据库,帮助读者做出更好的选择。
Redis
Redis是一款基于键值对存储的NoSql数据库。它可以存储字符串、哈希、列表、、有序等数据类型。Redis强调了高速读写能力和高并发处理能力,通过服务器端保存数据的方式,让Redis支持的许多功能可以在存储数据量达到物理内存极限时仍然能够使用。Redis支持数据的持久化保存,可以将数据存储在硬盘中以免数据丢失。除此之外,Redis还支持多线程并发读写,非常适合高并发应用。
Redis的缺点在于存储数据的容量有限,如果数据量极大,往往需要借助其他技术来解决。同时,Redis不支持ACID事务,如果需要实现强一致性的数据操作,需要开发者自行解决。
Memcached
Memcached是一种高性能的分布式内存对象缓存系统。其核心思想是将大量的数据存储到内存中,通过缓存机制,提高应用的响应速度。相比于Redis,Memcached的读写速度更快,适合于高并发的访问。Memcached通过利用多个服务器来缓存数据,提高可用性和可扩展性。Memcached也支持一些高级特性,如CAS操作和Touch操作等,可以实现更高级的缓存应用场景。
Memcached缺点在于不支持持久化存储,需要用户自行实现数据的备份和恢复。同时,Memcached只支持基本的数据类型,无法存储复杂的数据格式。
Hazelcast
Hazelcast是一种开源的基于内存的数据网格,提供分布式集群存储和计算能力。Hazelcast可以满足高并发、大数据量、高可用性的数据处理需求。它的主要特点是分布式、高可用、容错、高性能。Hazelcast除了提供了分布式的缓存存储能力之外,还提供了分布式的数据计算、集群通信等功能。Hazelcast也支持动态扩容和缩容,可以随时增加和减少节点的数量,方便调整系统的性能和容量。
Hazelcast的缺点在于需要开发者自定义数据类型,较复杂。同时,Hazelcast的性能对于数据的大小和数据类型非常敏感,需要进行测试和优化。
Conclusion
综上所述,Redis、Memcached和Hazelcast都是非常优秀的开源内存数据库。开发者在选择数据库时需要根据自身的需求来选择,如是否需要持久化功能、是否需要事务支持、是否需要复杂数据结构等。对于高并发、大数据、高可用性的要求,可以使用Redis和Memcached;对于需要分布式计算和集群通信的业务场景,则可以选择Hazelcast。无论选择哪一款内存数据库,开发者都需要充分了解其特点和优缺点,进行合理的使用和优化。
成都网站建设公司-创新互联为您提供网站建设、网站制作、网页设计及定制高端网站建设服务!
特性 MySQL PostgreSQL
实例 通过执行 MySQL 命令(mysqld)启动实例。一个实例可以管理一个或多个数据库。一台服务器可以运行多个 mysqld 实例。一个实例管理器可以监视 mysqld 的各个实例。
通过执行 Postmaster 进程(pg_ctl)启动实例。一个实例可以管理一个或多个数据库,这些数据库组成一个集群。集群是磁盘上的一个区域,这个区域在安装时初始化并由一个目录组成,所有数据都存储在这个目录中。使用 initdb 创建之一个数据库。一台机器上可以启动多个实例。
数据库 数据库是命名的对象,是与实例中的其他数据库分离的实体。一个 MySQL 实例中的所有数据库共享同一个系统编目。 数据库是命名的对象,每个数据库是与其他数据库分离的实体。每个数据库有自己的系统编目,但是所有数据库共享 pg_databases。
数据缓冲区 通过 innodb_buffer_pool_size 配置参数设置数据缓冲区。这个参数是内存缓冲区的字节数,InnoDB 使用这个缓冲区来缓存表的数据和索引。在专用的数据库服务器上,这个参数更高可以设置为机器物理内存量的 80%。 Shared_buffers 缓存。在默认情况下分配 64 个缓冲区。默认的块大小是 8K。可以通过设置 postgresql.conf 文件中的 shared_buffers 参数来更新缓冲区缓存。
数据库连接 客户机使用 CONNECT 或 USE 语句连接数据库,这时要指定数据库名,还可以指定用户 id 和密码。使用角色管理数据库中的用户和用户组。 客户机使用 connect 语句连接数据库,这时要指定数据库名,还可以指定用户 id 和密码。使用角色管理数据库中的用户和用户组。
身份验证携樱 MySQL 在数据库级管理身份验证。 基本只支持密码认证。 PostgreSQL 支持丰富的认证方法:信任认证、口令认证、Kerberos 认证、基于 Ident 的认证、LDAP 认证、PAM 认证
加密 可以在表级指定密码来对数据进行加密。还可以使用 AES_ENCRYPT 和 AES_DECRYPT 函数对列数据进行加密和解密。可以通过 SSL 连接实现网络加密。 可以使用 pgcrypto 库中的函数对列进行加密/解密。可以通辩码丛过 SSL 连接实现网络加密。
审计 可以对 querylog 执行 grep。 可以在表上使用 PL/pgSQL 触发器来进行审计。
查询解释 使用 EXPLAIN 命令查看查询的解释计划。 使用 EXPLAIN 命令查看查询的解释计划。
备份、恢复和日志 InnoDB 使用写前(write-ahead)日志记录。支持在线和离线完全备份以及崩溃和事务恢复。需要第三方软件才能支持热备份。 在数据目录的一个子目录中维护写前日志。支持在线和离线完全备份以及崩溃、时间点和事务恢复。 可以支持热备份。
JDBC 驱动程序 可以从 参考资料 下载 JDBC 驱动程序。 可以从 参考资料 下载 JDBC 驱动程序。
表类型 取决于存储引擎。例如,NDB 存储引擎支持分区表,内存引擎支持内存表。 支持临时表、常规表以及范围和列表类型的分区表。不支持哈希分区表。 由于PostgreSQL的表分区是通过表继承和规则系统完成了,所以可以实现更复杂的分区方式。
索引类型 取决于存储引擎。MyISAM:REE,InnoDB:REE。 支持 B-树、哈希、R-树和 Gist 索引。
约束 支持主键、外键、惟一和非空约束。对检查约束进行解析,但是不强制实施。 支持主键、外键、惟一、非空和检查约束。
存模腊储过程和用户定义函数 支持 CREATE PROCEDURE 和 CREATE FUNCTION 语句。存储过程可以用 SQL 和 C++ 编写。用户定义函数可以用 SQL、C 和 C++ 编写。 没有单独的存储过程,都是通过函数实现的。用户定义函数可以用 PL/pgSQL(专用的过程语言)、PL/Tcl、PL/Perl、PL/Python 、SQL 和 C 编写。
触发器 支持行前触发器、行后触发器和语句触发器,触发器语句用过程语言复合语句编写。 支持行前触发器、行后触发器和语句触发器,触发器过程用 C 编写。
系统配置文件 my.conf Postgresql.conf
数据库配置 my.conf Postgresql.conf
客户机连接文件 my.conf pg_hba.conf
XML 支持 有限的 XML 支持。 有限的 XML 支持。
数据访问和管理服务器 OPTIMIZE TABLE —— 回收未使用的空间并消除数据文件的碎片
myisamchk -yze —— 更新查询优化器所使用的统计数据(MyISAM 存储引擎)
mysql —— 命令行工具
MySQL Administrator —— 客户机 GUI 工具 Vacuum —— 回收未使用的空间
Analyze —— 更新查询优化器所使用的统计数据
psql —— 命令行工具
pgAdmin —— 客户机 GUI 工具
并发控制 支持表级和行级锁。InnoDB 存储引擎支持 READ_COMMITTED、READ_UNCOMMITTED、REPEATABLE_READ 和 SERIALIZABLE。使用 SET TRANSACTION ISOLATION LEVEL 语句在事务级设置隔离级别。 支持表级和行级锁。支持的 ANSI 隔离级别是 Read Committed(默认 —— 能看到查询启动时数据库的快照)和 Serialization(与 Repeatable Read 相似 —— 只能看到在事务启动之前提交的结果)。使用 SET TRANSACTION 语句在事务级设置隔离级别。使用 SET SESSION 在会话级进行设置。
MySQL相对于PostgreSQL的劣势:
MySQL
PostgreSQL
最重要的引擎InnoDB很早就由Oracle公司控制。目前整个MySQL数据库都由Oracle控制。
BSD协议,没有被大公司垄断。
对复杂查询的处理较弱,查询优化器不够成熟
很强大的查询优化器,支持很复杂的查询处理。
只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join)。
都支持
性能优化工具与度量信息不足
提供了一些性能视图,可以方便的看到发生在一个表和索引上的select、delete、update、insert统计信息,也可以看到cache命中率。网上有一个开源的pgstatspack工具。
InnoDB的表和索引都是按相同的方式存储。也就是说表都是索引组织表。这一般要求主键不能太长而且插入时的主键更好是按顺序递增,否则对性能有很大影响。
不存在这个问题。
大部分查询只能使用表上的单一索引;在某些情况下,会存在使用多个索引的查询,但是查询优化器通常会低估其成本,它们常常比表扫描还要慢。
不存在这个问题
表增加列,基本上是重建表和索引,会花很长时间。
表增加列,只是在数据字典中增加表定义,不会重建表
存储过程与触发器的功能有限。可用来编写存储过程、触发器、计划事件以及存储函数的语言功能较弱
除支持pl/pgsql写存储过程,还支持perl、python、Tcl类型的存储过程:pl/perl,pl/python,pl/tcl。
也支持用C语言写存储过程。
不支持Sequence。
支持
不支持函数索引,只能在创建基于具体列的索引。
不支持物化视图。
支持函数索引,同时还支持部分数据索引,通过规则系统可以实现物化视图的功能。
执行计划并不是全局共享的, 仅仅在连接内部是共享的。
执行计划共享
MySQL支持的SQL语法(ANSI SQL标准)的很小一部分。不支持递归查询、通用表表达式(Oracle的with 语句)或者窗口函数(分析函数)。
都 支持
不支持用户自定义类型或域(domain)
支持。
对于时间、日期、间隔等时间类型没有秒以下级别的存储类型
可以精确到秒以下。
身份验证功能是完全内置的,不支持操作系统认证、PAM认证,不支持LDAP以及其它类似的外部身份验证功能。
支持OS认证、Kerberos 认证 、Ident 的认证、LDAP 认证、PAM 认证
不支持database link。有一种叫做Federated的存储引擎可以作为一个中转将查询语句传递到远程服务器的一个表上,不过,它功能很粗糙并且漏洞很多
有dblink,同时还有一个dbi-link的东西,可以连接到oracle和mysql上。
Mysql Cluster可能与你的想象有较大差异。开源的cluster软件较少。
复制(Replication)功能是异步的,并且有很大的局限性.例如,它是单线程的(single-threaded),因此一个处理能力更强的Slave的恢复速度也很难跟上处理能力相对较慢的Master.
有丰富的开源cluster软件支持。
explain看执行计划的结果简单。
explain返回丰富的信息。
类似于ALTER TABLE或CREATE TABLE一类的操作都是非事务性的.它们会提交未提交的事务,并且不能回滚也不能做灾难恢复
DDL也是有事务的。
PostgreSQL主要优势:
1. PostgreSQL完全免费,而且是BSD协议,如果你把PostgreSQL改一改,然后再拿去卖钱,也没有人管你,这一点很重要,这表明了PostgreSQL数据库不会被其它公司控制。oracle数据库不用说了,是商业数据库,不开放。而MySQL数据库虽然是开源的,但现在随着SUN被oracle公司收购,现在基本上被oracle公司控制,其实在SUN被收购之前,MySQL中最重要的InnoDB引擎也是被oracle公司控制的,而在MySQL中很多重要的数据都是放在InnoDB引擎中的,反正我们公司都是这样的。所以如果MySQL的市场范围与oracle数据库的市场范围冲突时,oracle公司必定会牺牲MySQL,这是毫无疑问的。
2. 与PostgreSQl配合的开源软件很多,有很多分布式集群软件,如pgpool、pgcluster、slony、plploxy等等,很容易做读写分离、负载均衡、数据水平拆分等方案,而这在MySQL下则比较困难。
. PostgreSQL源代码写的很清晰,易读性比MySQL强太多了,怀疑MySQL的源代码被混淆过。所以很多公司都是基本PostgreSQL做二次开发的。
. PostgreSQL在很多方面都比MySQL强,如复杂SQL的执行、存储过程、触发器、索引。同时PostgreSQL是多进程的,而MySQL是线程的,虽然并发不高时,MySQL处理速度快,但当并发高的时候,对于现在多核的单台机器上,MySQL的总体处理性能不如PostgreSQL,原因是MySQL的线程无法充分利用CPU的能力。
目前只想到这些,以后想到再添加,欢迎大家拍砖。
PostgreSQL与oracle或InnoDB的多版本实现的差别
PostgreSQL与oracle或InnoDB的多版本实现更大的区别在于最新版本和历史版本是否分离存储,PostgreSQL不分,而oracle和InnoDB分,而innodb也只是分离了数据,索引本身没有分开。
PostgreSQL的主要优势在于:
1. PostgreSQL没有回滚段,而oracle与innodb有回滚段,oracle与Innodb都有回滚段。对于oracle与Innodb来说,回滚段是非常重要的,回滚段损坏,会导致数据丢失,甚至数据库无法启动的严重问题。另由于PostgreSQL没有回滚段,旧数据都是记录在原先的文件中,所以当数据库异常crash后,恢复时,不会象oracle与Innodb数据库那样进行那么复杂的恢复,因为oracle与Innodb恢复时同步需要redo和undo。所以PostgreSQL数据库在出现异常crash后,数据库起不来的几率要比oracle和mysql小一些。
2. 由于旧的数据是直接记录在数据文件中,而不是回滚段中,所以不会象oracle那样经常报ora-01555错误。
3. 回滚可以很快完成,因为回滚并不删除数据,而oracle与Innodb,回滚时很复杂,在事务回滚时必须清理该事务所进行的修改,插入的记录要删除,更新的记录要更新回来(见row_undo函数),同时回滚的过程也会再次产生大量的redo日志。
4. WAL日志要比oracle和Innodb简单,对于oracle不仅需要记录数据文件的变化,还要记录回滚段的变化。
PostgreSQL的多版本的主要劣势在于:
1、最新版本和历史版本不分离存储,导致清理老旧版本需要作更多的扫描,代价比较大,但一般的数据库都有高峰期,如果我们合理安排VACUUM,这也不是很大的问题,而且在PostgreSQL9.0中VACUUM进一步被加强了。
2、由于索引中完全没有版本信息,不能实现Coverage index scan,即查询只扫描索引,直接从索引中返回所需的属性,还需要访问表。而oracle与Innodb则可以;
进程模式与线程模式的对比
PostgreSQL和oracle是进程模式,MySQL是线程模式。
进程模式对多CPU利用率比较高。
进程模式共享数据需要用到共享内存,而线程模式数据本身就是在进程空间内都是共享的,不同线程访问只需要控制好线程之间的同步。
线程模式对资源消耗比较少。
所以MySQL能支持远比oracle多的更多的连接。
对于PostgreSQL的来说,如果不使用连接池软件,也存在这个问题,但PostgreSQL中有优秀的连接池软件软件,如pgbouncer和pgpool,所以通过连接池也可以支持很多的连接。
没有哪个好哪个不好,,看使用场景决定用哪个
1.数据量太大,比如上亿,就用oracle,优点上亿数据对Oracle来说轻飘飘的,也不用太多优化配置,缺点安装比较麻烦,上手比较慢老余。
2.数据量较大,比如千万级,用postgresql,它号称对标Oracle,处理千万级数据还是可以的,也是易学易用。
3.数据量一般,比如百万级,用mysql,这个级别的数据量mysql处理还是比较快的。
4.数据量较小,比如十万以下,sqlite、access都可以。
上面是基于单表操作的数据量,你看着选。
简单易用的数据库哪个比较好?这个要具体看你的用途,如果数据量比较少(10万左右),追求简约简单,免费开源的sqlite就行,如果数据量比较多,考虑到高并发、分布式,可以使用专业的mysql、postgresql,下面我分别简单介绍一下,感兴趣的朋友可以尝试一下:
小巧灵活sqlite
这是基于
c语言
开发的一个轻量级
关系型数据库
,短小精悍、免费开源,个人使用无需繁琐的配置,只需一个简单的运行库便可直接使用,针对各种
编程语言
都提供了丰富的API接口, java、 python、c#等都可轻松操作,如果你存储数据量不多,只是本地简单的操作(读多写少),可以使用一下这个数据库,占用内存非常少,轻便灵活,当然,在高并发、数据量大的情况下就不合适了:
专业强大mysql
这是目前应该广泛使用的一个关系型数据库,免费开源跨平台,在信息系统开发方面一直占据着主力位置,如果你从事于web开发或者网站后台建设,那么这个数据库一定非常熟悉,支持高并发、分布式,存储数据量相对于sqlite来说,更多也更安全,索引、触发器、
存储过程
等功能非常不错,支持数据导入导出、恢复备份,只要你熟悉一下基本使用过程,很快就能掌握和运用:
免费开源postgresql
这是
加州大学
计算机系开发的一个对象-关系型数据库(自由软件),免费、开源、跨平台,支持流计算、全文检索、图式搜索、并行计算、存储过程、空间数据、K-V类型,相比较mysql来说,在复杂查询、高并发下更稳定、性能更优越,可扩展性、可维护性非常不错,但也有劣势,例如新旧版本不分离存储,没有Coverage index scan等,总体使用效果来说还不错:
当然,除了以上3个数据库,还有许多其他数据库,像mssql、oracle等也都非常不错,对于存储和处理数据来说绰绰有余,只要你熟悉一下基本使用过程,很快就能入门的,网上也有相关教程和资料,介绍的非常详细,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。
更符合初学者理解和入门的是Access,因为它和Excel本来就是一个套件,相互转化容易,复制粘贴即可,非常好理解库、表、字段、键的概念。
如果数据量不大,强烈推荐试试Filemaker,脚本化编程,自由定制输入界面、工作流程,非常便捷高效。
最近杀出来的airtable,更是简单高效,界面美观,操作与电子表格相当,发展势头也非常迅猛。
二者侧重点有所不同,用户可根据需要选择
作为一个软件开发人员皮团,长期需要和数据库打交道,个人更加青睐于MySQL。虽然可能基于你的Excel原因,有些人会建议你使用Access数据库,但是基于我个人的 意见,我并不建议你那样做。采用MySql的具体理由如下:
1.MySQL具有普遍性,在国内的环境中,绝大多数的互联网企业采用的是MySQL。有了广大的用户基础后,针对于各种问题网上也能更好地找到解决方案。
2.MySQL相对于Oracle而言,更加轻量化,针对于从Excel量级的数据,没必要使用Oracle。同时MySQL是完全免费的,不用担心版权及费用问题,无论对个人还是对预算有限的企业而言都是很好的选择。
3.MySQL高度兼容标准SQL,这对燃含橘于以后迁移到其他数据库而言,也能很大程度地降低学习成本。
希望我的回答能够对你有所帮助!!!
Excel办公确实便利,可以做一些简单的
数据分析
,但涉及大量复杂的数据运算,就会遇到和题主一样的问题,运算速度慢,如果主机性能不是很好,还有可能面临
电脑死机
,数据丢失等问题。
遇到这种情况,我们该如何解决呢?数据库的重要性显而易见!
现在,
我将用3分钟的时间,与您探讨该选择何种数据库,以及选择它的理由,是否有更优的解决方案呢?
MySQL数据库
,90%的企业都会选择它
数据库选得好,企业的数据安全,资产安全,也就得到了保障。那么该如何选择数据库呢?这个跟你的业务量和业务服务行业,密不可分。
如果你只是上班打卡,用SQL server就可以了;
如果你要储存会话信息,用户配置信息,购物车数据,建议使用NoSQL数据库;
不过90%的企业或个人,首选数据库都是MySQL数据库。
为什么这么说?
因为,它集
低成本、高可用、可靠性强、易用性强、体积小、速度快开放源码
等特性于一身,所以在金融、财务、网站、
数据处理
等应用领域,它占据着独一无二的优势。
这也是几乎所有企业都选择它,来存储数据的原因。
加之MySQL数据库,支持多种存储引擎,支持大型数据库,可以处理成千上万条记录,还提供用于管理、检查、优化数据库操作的工具。
因而,MySQL尤其受个人,以及中小企业的推崇。
虽然MySQL数据库简单易用,但我还是不会部署该怎么办?
别担心,现在市面上已经出现了,一种自带数据库的新型
办公软件
。
比如说,云表企业应用平台,一款兼容excel功能,但功能更为强大的办公软件,它就内嵌了MySQL数据库。
(文末有免费获取方式)
云表内嵌的MySQL数据库,有何优点?
1. 性能更加优化,更加兼容系统。因为云表的研发人员,时刻更新维护MySQL数据库。
2. 省去自己手动部署的麻烦。但如果你熟悉部署数据库,想把数据库改成Oracle或SQL server等数据库,也可以设置。(不过,我建议IT小白还是
“拿来即用”
就好)
3. 快速实时计算。数据分析实时交互,完全满足管理决策中的临时性分析,多变的业务需求,以及频繁的结果刷新。
4. 通过自带的内存计算引擎,无需事先建立CUBE,IT部门将告别报表延时报表分析,亿级数据秒级响应。
内嵌的MySQL数据库是否可靠
云表不仅是一款办公软件,同时还是一款开发工具。
通过它,你将解决以下问题:
复杂的数据运算,精确到行列的权限管控,以及工作流,海量用户同时在线办公,数据透视,制作像销售单,洽谈合同等表单报表,一份制作,即可重复录用……
你还可以通过它,与电子称、地磅等进行对接,与
用友
金蝶等三方
系统集成
,生成条形码,扫码出入库,生成移动端APP……
基本上业务所需的功能,你都可以放心交给它做。
它更大的亮点就是,你可以
用使用excel的手法,用它来开发业务应用。
而且,可视化的
拖拉拽
之后,开发出来的ERP、WMS、OA、进销存等业务应用,还秉承了MySQL数据库增删改查的功能特性。
没错,用云表开发出来的业务应用,是允许二次开发的,而且功能可以随时增删改查,轻松满足大集团精细化的数据控制需求。
不过,大家最关心的应该是数据安全问题吧。
数据存放在云表内嵌的MySQL数据库,是安全不丢失的,它提供了多种数据存储的方式,本地部署,云端部署,混合部署,任君挑选!
正因如此,像
恒逸石化、许继电气、航天
科工委
、中铁、
中冶
、云南小松
等大型集团,才鼓励内部员工去学习云表。
篇幅所限,只说到这里,说太多你也不会看。
免费
的软获取方式在下方:
数据库的用处可大着呢,不仅可以实现数据共享,减少数据冗余度,还能实现对数据的集中控制,保持数据的一致性和可维护性。选取简单易用的数据库,你有什么好的建议呢,留言让我们看到噢!
题主强调了简单易用。所以推荐最简单三个。
1.Access。
2.Excel。
3.
飞书
文档、
腾讯文档
、石墨文档等的表格。
如果要做分析,数据量才比较大,建议Access,还是专业的更好一些。网上教程也很多,比较容易学。而且建议用早一点的版本,比如2023或者2023,Access这些年
微软
一直想从office里去掉,奈何用的人还是很多,所以不敢去掉,但是采取了一种比较恶心的方法让用户放弃,就是每发布一个新版本,就去掉一些好用的功能,所以说Access是越早的功能越强。
还一个推荐就是Sql Server Express版本,是SQL Server的免费版本,不要钱,基本功能都有,要比sqllite等强大的多
这要结合你个人实际情况来定,有计算机基础,懂一点数据库的话那么市场上的那些软件都可以用,常用有oracle,sqlserver,mysql等,要上手快还是sqlserver比较快,界面操作也比较直观;如果一点基础都没有,但是又要分析数据的话可以用微软自带的一个access,这个上手比较快。决定用哪一种之后还是要买点教材看,简单的sql查询要会,熟练之后也能提高工作效率。
1.Matplotlib
2.Seaborn
3.Plotly
4.Bokeh
5.Pydot
6.pyecharts
1、数据收集:(1)Scrapy:协助使用者自动提取网页所需信息,并将其整理为表格或ON格式的数据结构;(2)Selenium:使用者在感兴趣的网站上已经进行了交互行为之后,Seleniumn一般能派上用场;(3)BeautifulSoup:用来收集网站内容的Python库,更适合应用于规模相对较小的问题或一次性任务。
2、数据清理和转化:(4)Pandas:必须学习的,使用者可以运用Pandas操控处于Pandas数据框架内的数据,而且其内置巨量的函数,帮助迹唤使用者进行数据转换;(5)Numpy:必须学习的,Numpy将Python的对象列表拓展成了全面的多维度序列,而且其内置海量的数学函数;(6)Spacy:帮助使用者将自由文本转化为结构型数据,支持多种语言版本。
3、数据可视化:(7)Matplotlib:最全面的Python数据可视化库;(8)Plotly:只需要写最少的代码就能得出最多彩缤纷的图像。
4、数据模块化:(9)Scikit Learn:高级分析师,开启机器学习之旅,有六大主要模块:数据预处理姿旅凯,维度缩减,数据回归,数据分类,数据聚类分析,模型选择;(10)Tensorflow:由谷歌推出的来源机器学习库,是一个基于网页自动生成的仪表盘,它将数据学习流和结果进行了可视化处理,这一功能对于排错和展示都十分有用;(11)PyTorch:由Facebook发布的一个开源库,用作Python的公共机器学习框架。
5、音频和图像识别:(12)OpenCV:是最常用的图像和视频识别库,能让Python在图像和视频识别领域完全替代Matlab,不仅支持Python,还支持JAVA和Matlab;(13)Librosa:是一个非常强大的音频和声音镇衫处理Python库,可以从音频段中提取各个部分,例如节奏以及节拍。
6、网页:(14)Django:开发网页服务后端,设计理念是能用几行代码就建立一个网站的高级框架;(15)Flask:是一个用于Python的轻量级网页开发框架。
主流的关系型数据库:
1. MySQL:目前使用最广泛的开源、多平台的关系型数据库,支持事务、符合ACID、支持多数SQL规范。
2. SQL Server:支持事务、符合ACID、支持多数SQL规范,属于商业软件,需要注意版权和licence授权费用。
3. Oracle:支持事务,符合关系型数据信侍库原理,符合ACID,支持多数SQL规范,功能最强大、最复杂、市场占比更高的商业数据库。
4. Postgresql:开源、多平台、关系型数据库,功能最强大的开源数据库,需要Python环境,基于postgresql的time
scaleDB,是目前比较火的时序数据库之一。
非关系型数据库
Redis:开源、Linux平台、key-value键值型nosql数据库,简单稳定,非常主流的、全数据in-momory,定位于快的键值型nosql数据库。
Memcaced:一个开源的、高性能的、具有分布式内存对象的缓存系统,通过它可以减轻数据库负载,加速动态的web应用。
面向文档数据库以文档的形式存储,每搭伏个文档是一系列数据项的,每个数据项有名称与对应的值,主要产品有:
MongoDB:开源、多平台、文档型nosql数据库,最像关系型数据库,定位于灵活的nosql数据知坦携库。适用于网站后台数据库、小文件系统、日志分析系统。
MYSQL
目前使用最广泛的开源、多平台的关系型数据库,支持事务、符合ACID、支持多数SQL规范
SQL Server
支持事务、符合ACID、支持多数SQL规范,属于商业软件,需要注意版权和licence授权费用
Oracle
支持事务,符合关系型数禅森据库原理,符合ACID,支持多数SQL规范,功能最强大、最复杂、市场占比更高的商业数据库
Postgresql
开源、多平台、关系型数据库,功能最强大的开源数据库祥袭让,需要python环境,基于postgresql的TimeScaleDB,是目前比较火的时序数据库之一。
非关系型数据库
非关系型数据库也称为NOSQL(Not Only SQL),作为关系型数据库的一个补充,能在特定场景和特谨局点问题下发挥高效率和高性能。
常见的非关系型数据库类型有键值(Key-Value)存储数据库和面向文档数据库(Document-oriented)
键值存储数据库类似hash,通过key做添加、删除、查询,性能高,优势在于简单、易部署、高并发,主要产品有
Redis
开源、Linux平台、key-value键值型Nosql数据库,简单稳定,非常主流的、全数据in-momory、定位于“快”的键值型nosql数据库
Memcaced
一个开源的、高性能的、具有分布式内存对象的缓存系统,通过它可以减轻数据库负载,加速动态的web应用
面向文档数据库以文档的形式存储,每个文档是一系列数据项的,每个数据项有名称与对应的值,主要产品有
MongoDB
开源、多平台、文档型nosql数据库,“最像关系型数据库”,定位于“灵活”的nosql数据库。适用于网站后台数据库(更新快、实时复制)、小文件系统(json,二进制)、日志分析系统(数据量大的文件)。
开源内存数据库 比较的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于开源内存数据库 比较,开源内存数据库比较,哪种更适合你?,MySQL与PostgreSQL比较 哪个数据库更好,数据库应该选择什么?,python常用的数据库有哪些?的信息别忘了在本站进行查找喔。
创新互联(cdcxhl.com)提供稳定的云服务器,香港云服务器,BGP云服务器,双线云服务器,高防云服务器,成都云服务器,服务器托管。精选钜惠,欢迎咨询:028-86922220。
本文名称:开源内存数据库比较,哪种更适合你?(开源内存数据库比较)
文章分享:http://www.csdahua.cn/qtweb/news41/452941.html
网站建设、网络推广公司-快上网,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网