数据不安全?隐私计算让数据“可用不可见”

市场经济中,大多新事物之所以得到关注,是因为有了提前舆论造势。舆论热度往往代表了市场热度。市场驱动需求,带来的是创业者和投资者的闻风而至。多数互联网模式的兴起,大抵如此。

创新互联为企业级客户提高一站式互联网+设计服务,主要包括成都网站建设、网站制作、重庆APP软件开发、微信平台小程序开发、宣传片制作、LOGO设计等,帮助客户快速提升营销能力和企业形象,创新互联各部门都有经验丰富的经验,可以确保每一个作品的质量和创作周期,同时每年都有很多新员工加入,为我们带来大量新的创意。 

但也有特殊,所谓“兵马未动,粮草先行”。在大众未知或未感的情况下,相关技术及应用,已经悄然蔓延创投圈,并在产业链上,找到了自己的专属位置。隐私计算就是其中典型。

讲个笔者亲历故事:

笔者最早听说“隐私计算”这个词的时候,大约在半年前。与一朋友交谈,由于对方是业内出身,聊天中难免充满了隐私计算的高深技术用词。在对方连续十分钟的有关隐私计算的发言后,我依然很懵懂。

但我还是坚持用外行解读,为他的讲话做了简单总结:“所谓隐私计算,就是数据安全的一种算法吧。现在数据安全确实需要提上日程。”

对方极力否认:“不,不,不只是数据安全……”

于是,我更迷惑了。接着他便开始了下一轮十分钟的隐私计算概念讲述。

中间,我忍不住择机打断他:“嗯,隐私计算,说到底还是数据安全的问题。”我们各自坚持自己对隐私计算的解读方式。

后来我想,当一个人深入一门行业的时候,他的理解一定是深入、细致,且具有发散性的。随着我对隐私计算的更多了解,我越来越后悔当初不该那么简单粗暴地打断他。显得我如此的外行又不近人情。

那么,隐私计算到底是什么呢?在数据时代,又有哪些效力?

“密码学”揭开隐私计算的隐私

在隐私计算的认知上,从当初“数据安全”,如今我有了更多的认识——数据时代,数据安全成为亟待解决的重大问题。而隐私计算,在数据应用,政策法律合规性的要求下,以密码学为技术逻辑,由技术提供方和数据运营方,提供可信的算法模型。实现数据的可信流通,为数字时代的发展保驾护航。

说隐私计算是技术略显勉强,事实上它是多项技术组成的系统。

在隐私计算的关键技术方案中,以下三种技术实现思路是隐私计算的主要技术方案:以密码学为核心的多方安全计算(MPC)、融合隐私保护技术的可信联邦学习(TFL)、依托可信硬件的可信执行环境(TEE)。

隐私计算涉及到的密码学、数学、分布式系统和底层硬件、差分隐私、可信执行环境、算法模型等学科技术中,最核心的当属密码学。尤其是同态加密(Homomorphic Encryption,HE)的应用,作为一项新型加密技术,可实现数据加密后仍然可以被分析处理,如检索、统计、AI任务操作。在学术研究中,同态加密可以分为加密神经网络、加密KNN、加密决策树和加密支持向量机等算法。其所使用的加密函数性质在数学上称为同态性。

笔者认为,密码学的技术逻辑,可作为支撑隐私计算的底层逻辑。

另外,算法模型常被看作是数据智能化的路径。在隐私计算中,算法模型成为了加密模型。在数据提供者和数据运营者之间,正是由加密模型搭起了一座实现数字“加密”的桥梁。在有关隐私计算的技术方案里,模型的应用依然是实现“可用不可见”的关键环节。不可逆的密文交互模型训练与构建,是数字这个基础资料,实现隐私保护和智能化的利器。

依托隐私计算的技术逻辑看市场应用:隐私计算可在数据生产要素市场化匹配的同时,实现数据可信流通。进而在数字时代发挥自己在金融、政务、医疗等多领域的数据管控作用。

但隐私计算也有内卷。隐私计算在数据真实性、数据来源、数据确权及流转过程是否安全和合规等方面,也会陷入无法计算的困境。

不过解决之道已经显现。区块链共识和智能合约机制,提供了数据真实性验证和审计,实现数据安全流通及数据确权等。可实现数据溯源、难以篡改、公开透明、智能合约自动执行等特点的区块链技术,与隐私计算的融合,可以有力解决多方协作与信任问题。两者融合产生的价值,无疑为数据安全带来更多的期待。

数据安全拓展隐私计算前景

在实现数据安全的通道上,数据脱敏、匿名化、假名化、去标识化,差分隐私和同态加密均可实现某种程度的隐私数据保护。隐私计算可以说是博采众长。

隐私计算的发展,自然有其可依赖的市场环境。近几年,全国人大先后出台了《网络安全法》、《数据安全法》和《个人信息保护法》。三法联动的政策引导和市场驱动下,中国隐私计算在“产学研”上有了协同发展,且正在得以加速商用。

以下数据,验证了隐私计算在中国的市场前景:

根据IDC调研发现,2021中国隐私计算市场规模突破8.6亿元人民币大关。预计至2025年将达到145.1亿元。相对《“十四五”大数据产业发展规划》发展目标提出2025年,大数据产业测算规模突破3万亿元的份额,还微不足道,但隐私计算在基础产品服务,数据运营商业模式方面的巨大市场空间,已经被资本追捧。

据企查查、艾瑞咨询等行业公开数据显示,2016年-2022年Q1,中国隐私计算行业共计发生55起融资事件,累计融资金额超30亿元人民币。

而在市场参与者中,数据使用方、数据提供方和隐私计算服务商构成了隐私计算产业链的三方主体。但进一步分析,隐私计算的相关产业链条除了垂直厂商,还涉及IT、云计算、区块链,AI及大数据,安全科技等公司。包括各类综合科技类企业,都将成为隐私计算市场大格局中的一环。

当下,中国隐私计算仍处于基建期,但发展迅速。在市场需求和政策引导下,隐私计算在场景拓展,产品应用以及技术升级,实现全域数据流通方面,有巨大的市场发展远景。

在由探索期向成长、成熟期的过渡中,中国隐私计算产业在金融保险,政务、通信、医疗等多领域,进行了有效的应用实践和增量空间探索。

据艾瑞咨询研究院调研数据,预计2022年展开隐私计算投入的金融机构数量约是2021年的2倍或2倍以上。另外2022《政府工作报告》提到,要建设数字信息基础设施,推进5G规模化应用,促进产业数字化转型,发展智慧城市、数字乡村。因此,政务方面,国内多地已将隐私计算纳入城市数字化发展规划(如数字政府、数字社会建设)中。隐私计算,正赋能越来越多的智慧城市建设。

据公开报道,广东省去年7月发布的《广东省数据要素市场化配置改革行动方案》中,就提出了构建包含隐私计算在内的新型数据基础设施;成都也将在全国率先建设基于超算中心的隐私计算平台。

预计未来2-3年,即2025年前,隐私计算将由探索实践,逐步实现更多的场景落地。完成隐私计算的技术应用和初步探索期。接下去,行业将迎来快速成长期和膨胀期。随后,行业回归理性将在所难免。

分享标题:数据不安全?隐私计算让数据“可用不可见”
标题URL:http://www.csdahua.cn/qtweb/news40/480740.html

成都网站优化推广公司_创新互联,为您提供网站内链商城网站外贸网站建设面包屑导航电子商务建站公司

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网