一、什么是Hadoop1.0?
Hadoop1.0即***代Hadoop,指的是版本为Apache Hadoop 0.20.x、1.x或者CDH3系列的Hadoop,内核主要由HDFS和MapReduce两个系统组成,其中MapReduce是一个离线处理框架,由编程模型(新旧API)、运行时环境(JobTracker和TaskTracker)和数据处理引擎(MapTask和ReduceTask)三部分组成。
二、什么是Hadoop2.0?
Hadoop2.0即第二代Hadoop,指的是版本为Apache Hadoop 0.23.x、2.x或者CDH4系列的Hadoop,内核主要由HDFS、MapReduce和YARN三个系统组成,其中YARN是一个资源管理系统,负责集群资源管理和调度,MapReduce则是运行在YARN上的离线处理框架,它与Hadoop 1.0中的MapReduce在编程模型(新旧API)和数据处理引擎(MapTask和ReduceTask)两个方面是相同的。
三、两者的区别
1. 从Hadoop整体框架来说
Hadoop1.0由分布式存储系统HDFS和分布式计算框架MapReduce组成,其中HDFS由一个NameNode和多个DateNode组成,MapReduce由一个JobTracker和多个TaskTracker组成。
Hadoop2.0为克服Hadoop1.0中的不足进行了下面改进:
(1)针对Hadoop1.0单NameNode制约HDFS的扩展性问题,提出HDFS Federation,它让多个NameNode分管不同的目录进而实现访问隔离和横向扩展,同时彻底解决了NameNode单点故障问题;
(2)针对Hadoop1.0中的MapReduce在扩展性和多框架支持等方面的不足,它将JobTracker中的资源管理和作业控制分开,分别由ResourceManager(负责所有应用程序的资源分配)和ApplicationMaster(负责管理一个应用程序)实现,即引入了资源管理框架Yarn。
(3)Yarn作为Hadoop2.0中的资源管理系统,它是一个通用的资源管理模块,可为各类应用程序进行资源管理和调度,不仅限于MapReduce一种框架,也可以为其他框架使用,如Tez、Spark、Storm等
2. 从MapReduce计算框架来讲
MapReduce1.0计算框架主要由三部分组成:编程模型、数据处理引擎和运行时环境。它的基本编程模型是将问题抽象成Map和Reduce两个阶段,其中Map阶段将输入的数据解析成key/value,迭代调用map()函数处理后,再以key/value的形式输出到本地目录,Reduce阶段将key相同的value进行规约处理,并将最终结果写到HDFS上;它的数据处理引擎由MapTask和ReduceTask组成,分别负责Map阶段逻辑和Reduce阶段的逻辑处理;它的运行时环境由一个JobTracker和若干个TaskTracker两类服务组成,其中JobTracker负责资源管理和所有作业的控制,TaskTracker负责接收来自JobTracker的命令并执行它。
MapReducer2.0具有与MRv1相同的编程模型和数据处理引擎,唯一不同的是运行时环境。MRv2是在MRv1基础上经加工之后,运行于资源管理框架Yarn之上的计算框架MapReduce。它的运行时环境不再由JobTracker和TaskTracker等服务组成,而是变为通用资源管理系统Yarn和作业控制进程ApplicationMaster,其中Yarn负责资源管理的调度而ApplicationMaster负责作业的管理。
Hadoop1与Hadoop2的区分还是非常大,HDFS和MR都有不同,最起码的配置文件就不一样。项目应用的话,建议尽量往高版本走。稳健一点的话稍低于***版本的一个稳定版本即可。
【本文为专栏作者“朱国立”的原创稿件,转载请通过作者微信公众号“开发者圆桌”获取联系和授权】
分享文章:Hadoop1.0和Hadoop2.0的区别
当前链接:http://www.csdahua.cn/qtweb/news20/365920.html
成都网站优化推广公司_创新互联,为您提供企业建站、品牌网站设计、网页设计公司、虚拟主机、用户体验、搜索引擎优化
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网