麦肯锡合伙人:生成式AI有助于解决云迁移中的各种难题

麦肯锡合伙人:生成式AI有助于解决云迁移中的各种难题

2023-10-16 08:49:45
人工智能
云计算 生成式AI的四大核心用例分别是内容生成、客户参与、创建合成数据、以及编写代码。当然,这里的编写代码并非从零开始完成软件开发。生成式AI的编码能力主要体现在接手员工离职后无人熟悉的遗留代码,或者是将原有代码转换为新的语言形式。

麦肯锡公司合伙人Bhargs Srivathsan近日在新加坡召开的会议上表示,只要运用得当,生成式AI技术有望将云迁移工作量减少30%到50%。

Srivathsan认为,“目前的进度只能说才刚刚迈出第一步。随着大语言模型(LLM)的发展成熟,将工作负载迁移至公有云的时间表将不断缩短、迁移过程效率也能随之提升。”

她建议组织先使用大语言模型对系统内的基础设施进行摸底,解析其中的短板与优势,再在工作负载转移完成后继续应用AI工具查看迁移是否切实有效。

另外,还可以利用大语言模型完成更多相关工作,例如编写架构审查委员会指南等说明材料。

这位合伙人表示,尽管不少企业才刚刚开始考虑采用AI技术,但麦肯锡所投资的企业中已经有40%在更新其IT投入。

Srivathsan认为,生成式AI与云之间属于“共生”关系。

 “必须承认,如果没有公有云的普及、就不可能把生成式AI真正带入生活。而与之对应,生成式AI也能切实加快公有云迁移、并帮助用户从原有公有云中解锁脱离。”

在Srivathsan看来,生成式AI的四大核心用例分别是内容生成、客户参与、创建合成数据、以及编写代码。当然,这里的编写代码并非从零开始完成软件开发。生成式AI的编码能力主要体现在接手员工离职后无人熟悉的遗留代码,或者是将原有代码转换为新的语言形式。

她还强调,之所以说公有云比尝试内部自建模型更加靠谱,是因为企业用户往往不具备充足的GPU储备。而且市面上现成商用模型的成本也比自行训练更加低廉。

Srivathsan指出,对于身处受监管行业、掌握大量专有数据或者担心知识产权遭到侵犯的用户,还可以设置相应的护栏。

在她看来,大语言模型在未来五、六年时间内将主要运行在超大规模基础设施环境当中,直到模型发展成熟。而且跟很多人想象中不同,其实生成式AI的实现并不一定压根那么夸张的算力储备,毕竟很少有用例会对延迟提出如此严苛的要求。

也就是说,除非是特斯拉上运行的自动驾驶功能、或者负责指挥制造车间实时运行的软件,否则确实没必要把硬件堆得太满。

另外,多数情况下也没必要使用定制或大规模模型。

这位麦肯锡合伙人评论称,“很多企业都以为自己需要买辆超级跑车来送披萨。当然用不着喽,真正符合需求的模型往往没那么复杂、也没那么大。举例来说,生成客服支持脚本肯定没必要动用650亿参数的大体量模型。”

但她同时给出建议,如果开发人员正在访问自己本不该接触到的非专有模型或数据,则务必要在组织内外之间添加API网关来建立起“实时警报”机制。

分享文章:麦肯锡合伙人:生成式AI有助于解决云迁移中的各种难题
链接分享:http://www.csdahua.cn/qtweb/news20/342320.html

网站建设、网络推广公司-快上网,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网