本文转载自微信公众号「Java大数据与数据仓库」,作者柯少爷。转载本文请联系Java大数据与数据仓库公众号。
实时统计pv、uv是再常见不过的大数据统计需求了,前面出过一篇SparkStreaming实时统计pv,uv的案例,这里用Flink实时计算pv,uv。
我们需要统计不同数据类型每天的pv,uv情况,并且有如下要求.
DataStream是flink流处理最核心的数据结构,其它的各种流都可以直接或者间接通过DataStream来完成相互转换,一些常用的流直接的转换关系如图:
可以看出,DataStream可以与KeyedStream相互转换,KeyedStream可以转换为WindowedStream,DataStream不能直接转换为WindowedStream,WindowedStream可以直接转换为DataStream。各种流之间虽然不能相互直接转换,但是都可以通过先转换为DataStream,再转换为其它流的方法来实现。
在这个计算pv,uv的需求中就主要用到DataStream、KeyedStream以及WindowedStream这些数据结构。
这里需要用到window和watermark,使用窗口把数据按天分割,使用watermark可以通过“水位”来定期清理窗口外的迟到数据,起到清理内存的作用。
我们的数据是json类型的,含有date,version,guid这3个字段,在实时统计pv,uv这个功能中,其它字段可以直接丢掉,当然了在离线数据仓库中,所有有含义的业务字段都是要保留到hive当中的。其它相关概念就不说了,会专门介绍,这里直接上代码吧。
- xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
4.0.0 com.ddxygq bigdata 1.0-SNAPSHOT 2.11.8 1.7.0 bigdata org.apache.flink flink-scala_2.11 {flink.version} org.apache.flink flink-streaming-scala_2.11 flink.version org.apache.flink flink-streaming-java_2.11 {flink.version} org.apache.flink flink-connector-kafka-0.10_2.11 flink.version basedir/src/test−−> {pkg.name} src/main/java src/main/resources *.properties *.xml false org.apache.maven.plugins maven-surefire-plugin true org.scala-tools maven-scala-plugin 2.15.2 compile testCompile
主要代码,主要使用scala开发:
- package com.ddxygq.bigdata.flink.streaming.pvuv
- import java.util.Properties
- import com.alibaba.fastjson.JSON
- import org.apache.flink.runtime.state.filesystem.FsStateBackend
- import org.apache.flink.streaming.api.CheckpointingMode
- import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
- import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
- import org.apache.flink.streaming.api.windowing.time.Time
- import org.apache.flink.streaming.api.windowing.triggers.ContinuousProcessingTimeTrigger
- import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010
- import org.apache.flink.streaming.util.serialization.SimpleStringSchema
- import org.apache.flink.streaming.api.scala.extensions._
- import org.apache.flink.api.scala._
- /**
- * @ Author: keguang
- * @ Date: 2019/3/18 17:34
- * @ version: v1.0.0
- * @ description:
- */
- object PvUvCount {
- def main(args: Array[String]): Unit = {
- val env = StreamExecutionEnvironment.getExecutionEnvironment
- // 容错
- env.enableCheckpointing(5000)
- env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)
- env.setStateBackend(new FsStateBackend("file:///D:/space/IJ/bigdata/src/main/scala/com/ddxygq/bigdata/flink/checkpoint/flink/tagApp"))
- // kafka 配置
- val ZOOKEEPER_HOST = "hadoop01:2181,hadoop02:2181,hadoop03:2181"
- val KAFKA_BROKERS = "hadoop01:9092,hadoop02:9092,hadoop03:9092"
- val TRANSACTION_GROUP = "flink-count"
- val TOPIC_NAME = "flink"
- val kafkaProps = new Properties()
- kafkaProps.setProperty("zookeeper.connect", ZOOKEEPER_HOST)
- kafkaProps.setProperty("bootstrap.servers", KAFKA_BROKERS)
- kafkaProps.setProperty("group.id", TRANSACTION_GROUP)
- // watrmark 允许数据延迟时间
- val MaxOutOfOrderness = 86400 * 1000L
- // 消费kafka数据
- val streamData: DataStream[(String, String, String)] = env.addSource(
- new FlinkKafkaConsumer010[String](TOPIC_NAME, new SimpleStringSchema(), kafkaProps)
- ).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[String](Time.milliseconds(MaxOutOfOrderness)) {
- override def extractTimestamp(element: String): Long = {
- val t = JSON.parseObject(element)
- val time = JSON.parseObject(JSON.parseObject(t.getString("message")).getString("decrypted_data")).getString("time")
- time.toLong
- }
- }).map(x => {
- var date = "error"
- var guid = "error"
- var helperversion = "error"
- try {
- val messageJsonObject = JSON.parseObject(JSON.parseObject(x).getString("message"))
- val datetime = messageJsonObject.getString("time")
- date = datetime.split(" ")(0)
- // hour = datetime.split(" ")(1).substring(0, 2)
- val decrypted_data_string = messageJsonObject.getString("decrypted_data")
- if (!"".equals(decrypted_data_string)) {
- val decrypted_data = JSON.parseObject(decrypted_data_string)
- guid = decrypted_data.getString("guid").trim
- helperversion = decrypted_data.getString("helperversion")
- }
- } catch {
- case e: Exception => {
- println(e)
- }
- }
- (date, helperversion, guid)
- })
- // 这上面是设置watermark并解析json部分
- // 聚合窗口中的数据,可以研究下applyWith这个方法和OnWindowedStream这个类
- val resultStream = streamData.keyBy(x => {
- x._1 + x._2
- }).timeWindow(Time.days(1))
- .trigger(ContinuousProcessingTimeTrigger.of(Time.seconds(1)))
- .applyWith(("", List.empty[Int], Set.empty[Int], 0L, 0L))(
- foldFunction = {
- case ((_, list, set, _, 0), item) => {
- val date = item._1
- val helperversion = item._2
- val guid = item._3
- (date + "_" + helperversion, guid.hashCode +: list, set + guid.hashCode, 0L, 0L)
- }
- }
- , windowFunction = {
- case (key, window, result) => {
- result.map {
- case (leixing, list, set, _, _) => {
- (leixing, list.size, set.size, window.getStart, window.getEnd)
- }
- }
- }
- }
- ).keyBy(0)
- .flatMapWithState[(String, Int, Int, Long, Long),(Int, Int)]{
- case ((key, numpv, numuv, begin, end), curr) =>
- curr match {
- case Some(numCurr) if numCurr == (numuv, numpv) =>
- (Seq.empty, Some((numuv, numpv))) //如果之前已经有相同的数据,则返回空结果
- case _ =>
- (Seq((key, numpv, numuv, begin, end)), Some((numuv, numpv)))
- }
- }
- // 最终结果
- val resultedStream = resultStream.map(x => {
- val keys = x._1.split("_")
- val date = keys(0)
- val helperversion = keys(1)
- (date, helperversion, x._2, x._3)
- })
- resultedStream.print()
- env.execute("PvUvCount")
- }
- }
使用List集合的size保存pv,使用Set集合的size保存uv,从而达到实时统计pv,uv的目的。
这里用了几个关键的函数:
applyWith:里面需要的参数,初始状态变量,和foldFunction ,windowFunction ;
显然,当数据量很大的时候,这个List集合和Set集合会很大,并且这里的pv是否可以不用List来存储,而是通过一个状态变量,不断做累加,对应操作就是更新状态来完成。
使用了一个计数器来存储pv的值。
- packagecom.ddxygq.bigdata.flink.streaming.pvuv
- import java.util.Properties
- import com.alibaba.fastjson.JSON
- import org.apache.flink.api.common.accumulators.IntCounter
- import org.apache.flink.runtime.state.filesystem.FsStateBackend
- import org.apache.flink.streaming.api.CheckpointingMode
- import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
- import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
- import org.apache.flink.streaming.api.windowing.time.Time
- import org.apache.flink.streaming.api.windowing.triggers.ContinuousProcessingTimeTrigger
- import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010
- import org.apache.flink.streaming.util.serialization.SimpleStringSchema
- import org.apache.flink.streaming.api.scala.extensions._
- import org.apache.flink.api.scala._
- import org.apache.flink.core.fs.FileSystem
- object PvUv2 {
- def main(args: Array[String]): Unit = {
- val env = StreamExecutionEnvironment.getExecutionEnvironment
- // 容错
- env.enableCheckpointing(5000)
- env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)
- env.setStateBackend(new FsStateBackend("file:///D:/space/IJ/bigdata/src/main/scala/com/ddxygq/bigdata/flink/checkpoint/streaming/counter"))
- // kafka 配置
- val ZOOKEEPER_HOST = "hadoop01:2181,hadoop02:2181,hadoop03:2181"
- val KAFKA_BROKERS = "hadoop01:9092,hadoop02:9092,hadoop03:9092"
- val TRANSACTION_GROUP = "flink-count"
- val TOPIC_NAME = "flink"
- val kafkaProps = new Properties()
- kafkaProps.setProperty("zookeeper.connect", ZOOKEEPER_HOST)
- kafkaProps.setProperty("bootstrap.servers", KAFKA_BROKERS)
- kafkaProps.setProperty("group.id", TRANSACTION_GROUP)
- // watrmark 允许数据延迟时间
- val MaxOutOfOrderness = 86400 * 1000L
- val streamData: DataStream[(String, String, String)] = env.addSource(
- new FlinkKafkaConsumer010[String](TOPIC_NAME, new SimpleStringSchema(), kafkaProps)
- ).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[String](Time.milliseconds(MaxOutOfOrderness)) {
- override def extractTimestamp(element: String): Long = {
- val t = JSON.parseObject(element)
- val time = JSON.parseObject(JSON.parseObject(t.getString("message")).getString("decrypted_data")).getString("time")
- time.toLong
- }
- }).map(x => {
- var date = "error"
- var guid = "error"
- var helperversion = "error"
- try {
- val messageJsonObject = JSON.parseObject(JSON.parseObject(x).getString("message"))
- val datetime = messageJsonObject.getString("time")
- date = datetime.split(" ")(0)
- // hour = datetime.split(" ")(1).substring(0, 2)
- val decrypted_data_string = messageJsonObject.getString("decrypted_data")
- if (!"".equals(decrypted_data_string)) {
- val decrypted_data = JSON.parseObject(decrypted_data_string)
- guid = decrypted_data.getString("guid").trim
- helperversion = decrypted_data.getString("helperversion")
- }
- } catch {
- case e: Exception => {
- println(e)
- }
- }
- (date, helperversion, guid)
- })
- val resultStream = streamData.keyBy(x => {
- x._1 + x._2
- }).timeWindow(Time.days(1))
- .trigger(ContinuousProcessingTimeTrigger.of(Time.seconds(1)))
- .applyWith(("", new IntCounter(), Set.empty[Int], 0L, 0L))(
- foldFunction = {
- case ((_, cou, set, _, 0), item) => {
- val date = item._1
- val helperversion = item._2
- val guid = item._3
- cou.add(1)
- (date + "_" + helperversion, cou, set + guid.hashCode, 0L, 0L)
- }
- }
- , windowFunction = {
- case (key, window, result) => {
- result.map {
- case (leixing, cou, set, _, _) => {
- (leixing, cou.getLocalValue, set.size, window.getStart, window.getEnd)
- }
- }
- }
- }
- ).keyBy(0)
- .flatMapWithState[(String, Int, Int, Long, Long),(Int, Int)]{
- case ((key, numpv, numuv, begin, end), curr) =>
- curr match {
- case Some(numCurr) if numCurr == (numuv, numpv) =>
- (Seq.empty, Some((numuv, numpv))) //如果之前已经有相同的数据,则返回空结果
- case _ =>
- (Seq((key, numpv, numuv, begin, end)), Some((numuv, numpv)))
- }
- }
- // 最终结果
- val resultedStream = resultStream.map(x => {
- val keys = x._1.split("_")
- val date = keys(0)
- val helperversion = keys(1)
- (date, helperversion, x._2, x._3)
- })
- val resultPath = "D:\\space\\IJ\\bigdata\\src\\main\\scala\\com\\ddxygq\\bigdata\\flink\\streaming\\pvuv\\result"
- resultedStream.writeAsText(resultPath, FileSystem.WriteMode.OVERWRITE)
- env.execute("PvUvCount")
- }
- }
其实这里还是需要set保存uv,难免对内存有压力,如果我们的集群不大,为了节省开支,我们可以使用外部媒介,如hbase的rowkey唯一性、redis的set数据结构,都是可以达到实时、快速去重的目的。
参考资料
https://flink.sojb.cn/dev/event_time.htm
lhttp://wuchong.me/blog/2016/05/20/flink-internals-streams-and-operations-on-streams
https://segmentfault.com/a/1190000006235690
文章名称:Flink实时计算Pv、Uv的几种方法
URL地址:http://www.csdahua.cn/qtweb/news2/377802.html
网站建设、网络推广公司-快上网,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网