Hadoop—MapReduce编程思想

MapReduce,本质就是一种编程模型,也是一个处理大规模数据集的相关实现。之所以会有这个模型,目的是为了隐藏“并行计算、容错处理、数据分发、负载均衡”,从而实现大数据计算的一种抽象。

成都创新互联拥有网站维护技术和项目管理团队,建立的售前、实施和售后服务体系,为客户提供定制化的网站设计、成都网站设计、网站维护、遂宁联通机房解决方案。为客户网站安全和日常运维提供整体管家式外包优质服务。我们的网站维护服务覆盖集团企业、上市公司、外企网站、商城网站建设、政府网站等各类型客户群体,为全球数千家企业提供全方位网站维护、服务器维护解决方案。

1、环境说明

部署节点操作系统为CentOS,防火墙和SElinux禁用,创建了一个shiyanlou用户并在系统根目录下创建/app目录,用于存放Hadoop等组件运行包。因为该目录用于安装hadoop等组件程序,用户对shiyanlou必须赋予rwx权限(一般做法是root用户在根目录下创建/app目录,并修改该目录拥有者为shiyanlou(chown –R shiyanlou:shiyanlou /app)。

**Hadoop**搭建环境:

l 虚拟机操作系统: CentOS6.6 64位,单核,1G内存

l JDK:1.7.0_55 64位

l Hadoop:1.1.2

2、MapReduce原理

2.1 MapReduce简介

MapReduce 是现今一个非常流行的分布式计算框架,它被设计用于并行计算海量数据。第一个提出该技术框架的是Google 公司,而Google 的灵感则来自于函数式编程语言,如LISP,Scheme,ML 等。MapReduce 框架的核心步骤主要分两部分:Map 和Reduce。当你向MapReduce 框架提交一个计算作业时,它会首先把计算作业拆分成若干个Map 任务,然后分配到不同的节点上去执行,每一个Map 任务处理输入数据中的一部分,当Map 任务完成后,它会生成一些中间文件,这些中间文件将会作为Reduce 任务的输入数据。Reduce 任务的主要目标就是把前面若干个Map 的输出汇总到一起并输出。从高层抽象来看,MapReduce的数据流图如下图所示:

2.2 MapReduce流程分析

2.2.1 Map过程

\1. 每个输入分片会让一个map任务来处理,默认情况下,以HDFS的一个块的大小(默认为64M)为一个分片,当然我们也可以设置块的大小。map输出的结果会暂且放在一个环形内存缓冲区中(该缓冲区的大小默认为100M,由io.sort.mb属性控制),当该缓冲区快要溢出时(默认为缓冲区大小的80%,由io.sort.spill.percent属性控制),会在本地文件系统中创建一个溢出文件,将该缓冲区中的数据写入这个文件;

\2. 在写入磁盘之前,线程首先根据reduce任务的数目将数据划分为相同数目的分区,也就是一个reduce任务对应一个分区的数据。这样做是为了避免有些reduce任务分配到大量数据,而有些reduce任务却分到很少数据,甚至没有分到数据的尴尬局面。其实分区就是对数据进行hash的过程。然后对每个分区中的数据进行排序,如果此时设置了Combiner,将排序后的结果进行Combia操作,这样做的目的是让尽可能少的数据写入到磁盘;

\3. 当map任务输出最后一个记录时,可能会有很多的溢出文件,这时需要将这些文件合并。合并的过程中会不断地进行排序和combia操作,目的有两个:

l尽量减少每次写入磁盘的数据量

l尽量减少下一复制阶段网络传输的数据量。最后合并成了一个已分区且已排序的文件。为了减少网络传输的数据量,这里可以将数据压缩,只要将mapred.compress.map.out设置为true就可以了

\4. 将分区中的数据拷贝给相对应的reduce任务。有人可能会问:分区中的数据怎么知道它对应的reduce是哪个呢?其实map任务一直和其父TaskTracker保持联系,而TaskTracker又一直和JobTracker保持心跳。所以JobTracker中保存了整个集群中的宏观信息。只要reduce任务向JobTracker获取对应的map输出位置就可以了。

2.2.2 Reduce过程

\1. Reduce会接收到不同map任务传来的数据,并且每个map传来的数据都是有序的。如果reduce端接受的数据量相当小,则直接存储在内存中(缓冲区大小由mapred.job.shuffle.input.buffer.percent属性控制,表示用作此用途的堆空间的百分比),如果数据量超过了该缓冲区大小的一定比例(由mapred.job.shuffle.merge.percent决定),则对数据合并后溢写到磁盘中;

\2. 随着溢写文件的增多,后台线程会将它们合并成一个更大的有序的文件,这样做是为了给后面的合并节省时间。其实不管在map端还是reduce端,MapReduce都是反复地执行排序,合并操作;

\3. 合并的过程中会产生许多的中间文件(写入磁盘了),但MapReduce会让写入磁盘的数据尽可能地少,并且最后一次合并的结果并没有写入磁盘,而是直接输入到reduce函数。

2.3 MapReduce工作机制剖析

1.在集群中的任意一个节点提交MapReduce程序;

2.JobClient收到作业后,JobClient向JobTracker请求获取一个Job ID;

3.将运行作业所需要的资源文件复制到HDFS上(包括MapReduce程序打包的JAR文件、配置文件和客户端计算所得的输入划分信息),这些文件都存放在JobTracker专门为该作业创建的文件夹中,文件夹名为该作业的Job ID;

4.获得作业ID后,提交作业;

5.JobTracker接收到作业后,将其放在一个作业队列里,等待作业调度器对其进行调度,当作业调度器根据自己的调度算法调度到该作业时,会根据输入划分信息为每个划分创建一个map任务,并将map任务分配给TaskTracker执行;

6.对于map和reduce任务,TaskTracker根据主机核的数量和内存的大小有固定数量的map槽和reduce槽。这里需要强调的是:map任务不是随随便便地分配给某个TaskTracker的,这里有个概念叫:数据本地化(Data-Local)。意思是:将map任务分配给含有该map处理的数据块的TaskTracker上,同时将程序JAR包复制到该TaskTracker上来运行,这叫“运算移动,数据不移动”;

7.TaskTracker每隔一段时间会给JobTracker发送一个心跳,告诉JobTracker它依然在运行,同时心跳中还携带着很多的信息,比如当前map任务完成的进度等信息。当JobTracker收到作业的最后一个任务完成信息时,便把该作业设置成“成功”。当JobClient查询状态时,它将得知任务已完成,便显示一条消息给用户;

8.运行的TaskTracker从HDFS中获取运行所需要的资源,这些资源包括MapReduce程序打包的JAR文件、配置文件和客户端计算所得的输入划分等信息;

9.TaskTracker获取资源后启动新的JVM虚拟机;

\10. 运行每一个任务;

网站栏目:Hadoop—MapReduce编程思想
本文链接:http://www.csdahua.cn/qtweb/news2/309602.html

网站建设、网络推广公司-快上网,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网