学习 SQL 的时候,大家肯定第一个先学到的就是 select 查询语句了,比如下面这句查询语句:
十载的洪洞网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都全网营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整洪洞建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联从事“洪洞网站设计”,“洪洞网站推广”以来,每个客户项目都认真落实执行。
// 在 product 表中,查询 id = 1 的记录
select * from product where id = 1;
但是有没有想过,执行一条 select 查询语句,在 MySQL 中期间发生了什么?
带着这个问题,我们可以很好的了解 MySQL 内部的架构。
所以,这次小林就带大家拆解一下 MySQL 内部的结构,看看内部里的每一个“零件”具体是负责做什么的。
先来一个上帝视角图,下面就是 MySQL 执行一条 SQL 查询语句的流程,也从图中可以看到 MySQL 内部架构里的各个功能模块。
查询语句执行流程
可以看到, MySQL 的架构共分为两层:Server 层和存储引擎层。
好了,现在我们对 Server 层和存储引擎层有了一个简单认识,接下来,就详细说一条 SQL 查询语句的执行流程,依次看看每一个功能模块的作用。
如果你在 Linux 操作系统里要使用 MySQL,那你第一步肯定是要先连接 MySQL 服务,然后才能执行 SQL 语句,普遍我们都是使用下面这条命令进行连接:
# -h 指定 MySQL 服务得 IP 地址,如果是连接本地的 MySQL服务,可以不用这个参数;
# -u 指定用户名,管理员角色名为 root;
# -p 指定密码,如果命令行中不填写密码(为了密码安全,建议不要在命令行写密码),就需要在交互对话里面输入密码
mysql -h$ip -u$user -p
连接的过程需要先经过 TCP 三次握手,因为 MySQL 是基于 TCP 协议进行传输的,如果 MySQL 服务并没有启动,则会收到如下的报错:
如果 MySQL 服务正常运行,完成 TCP 连接的建立后,连接器就要开始验证你的用户名和密码,如果用户名或密码不对,就收到一个"Access denied for user"的错误,然后客户端程序结束执行。
如果用户密码都没有问题,连接器就会获取该用户的权限,然后保存起来,后续该用户在此连接里的任何操作,都会基于连接开始时读到的权限进行权限逻辑的判断。
所以,如果一个用户已经建立了连接,即使管理员中途修改了该用户的权限,也不会影响已经存在连接的权限。修改完成后,只有再新建的连接才会使用新的权限设置。
如果你想知道当前 MySQL 服务被多少个客户端连接了,你可以执行 show processlist 命令进行查看。
比如上图的显示结果,共有两个用户名为 root 的用户连接了 MySQL 服务,其中 id 为 6 的用户的 Command 列的状态为 Sleep ,这意味着该用户连接完 MySQL 服务就没有再执行过任何命令,也就是说这是一个空闲的连接,并且空闲的时长是 736 秒( Time 列)。
当然不是了,MySQL 定义了空闲连接的最大空闲时长,由 wait_timeout 参数控制的,默认值是 8 小时(28880秒),如果空闲连接超过了这个时间,连接器就会自动将它断开。
mysql> show variables like 'wait_timeout';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| wait_timeout | 28800 |
+---------------+-------+
1 row in set (0.00 sec)
当然,我们自己也可以手动断开空闲的连接,使用的是 kill connection + id 的命令。
mysql> kill connection +6;
Query OK, 0 rows affected (0.00 sec)
一个处于空闲状态的连接被服务端主动断开后,这个客户端并不会马上知道,等到客户端在发起下一个请求的时候,才会收到这样的报错“ERROR 2013 (HY000): Lost connection to MySQL server during query”。
MySQL 服务支持的最大连接数由 max_connections 参数控制,比如我的 MySQL 服务默认是 151 个,超过这个值,系统就会拒绝接下来的连接请求,并报错提示“Too many connections”。
mysql> show variables like 'max_connections';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| max_connections | 151 |
+-----------------+-------+
1 row in set (0.00 sec)
MySQL 的连接也跟 HTTP 一样,有短连接和长连接的概念,它们的区别如下:
// 短连接
连接 mysql 服务(TCP 三次握手)
执行sql
断开 mysql 服务(TCP 四次挥手)
// 长连接
连接 mysql 服务(TCP 三次握手)
执行sql
执行sql
执行sql
....
断开 mysql 服务(TCP 四次挥手)
可以看到,使用长连接的好处就是可以减少建立连接和断开连接的过程,所以一般是推荐使用长连接。
但是,使用长连接后可能会占用内存增多,因为 MySQL 在执行查询过程中临时使用内存管理连接对象,这些连接对象资源只有在连接断开时才会释放。如果长连接累计很多,将导致 MySQL 服务占用内存太大,有可能会被系统强制杀掉,这样会发生 MySQL 服务异常重启的现象。
有两种解决方式:
至此,连接器的工作做完了,简单总结一下:
连接器得工作完成后,客户端就可以向 MySQL 服务发送 SQL 语句了,MySQL 服务收到 SQL 语句后,就会解析出 SQL 语句的第一个字段,看看是什么类型的语句。
如果 SQL 是查询语句(select 语句),MySQL 就会先去查询缓存( Query Cache )里查找缓存数据,看看之前有没有执行过这一条命令,这个查询缓存是以 key-value 形式保存在内存中的,key 为 SQL 查询语句,value 为 SQL 语句查询的结果。
如果查询的语句命中查询缓存,那么就会直接返回 value 给客户端。如果查询的语句没有命中查询缓存中,那么就要往下继续执行,等执行完后,查询的结果就会被存入查询缓存中。
这么看,查询缓存还挺有用,但是其实查询缓存挺鸡肋的。
对于更新比较频繁的表,查询缓存的命中率很低的,因为只要一个表有更新操作,那么这个表的查询缓存就会被清空。如果刚缓存了一个查询结果很大的数据,还没被使用的时候,刚好这个表有更新操作,查询缓冲就被清空了,相当于缓存了个寂寞。
所以,MySQL 8.0 版本直接将查询缓存删掉了,也就是说 MySQL 8.0 开始,执行一条 SQL 查询语句,不会再走到查询缓存这个阶段了。
对于 MySQL 8.0 之前的版本,如果想关闭查询缓存,我们可以通过将参数 query_cache_type 设置成 DEMAND。
在正式执行 SQL 查询语句之前, MySQL 会先对 SQL 语句做解析,这个工作交由由解析器来完成,解析器会做如下两件事情。
如果我们输入的 SQL 语句语法不对,或者数据表或者字段不存在,都会在解析器这个阶段报错。
比如,我下面这条查询语句,把 from 写成了 form,这时 MySQL 解析器就会给报错。
比如,我下面这条查询语句,test 这张表是不存在的,这时 MySQL 解析器就会给报错。
mysql> select * from test;
ERROR 1146 (42S02): Table 'mysql.test' doesn't exist
经过解析器后,接着就要执行 SQL 查询语句了,但是在真正执行之前,会检查用户是否有访问该数据库表的权限,如果没有就直接报错了。
如果有权限,就进入 SQL 查询语句的执行阶段,而 SQL 查询语句真正执行之前需要先制定一个执行计划,这个工作交由「优化器」来完成的。
优化器主要负责将 SQL 查询语句的执行方案确定下来,比如在表里面有多个索引的时候,优化器会基于查询成本的考虑,来决定选择使用哪个索引。
当然,我们本次的查询语句(select * from product where id = 1)很简单,就是选择使用主键索引。
要想知道优化器选择了哪个索引,我们可以在查询语句最前面加个 explain 命令,这样就会输出这条 SQL 语句的执行计划,然后执行计划中的 key 就表示执行过程中使用了哪个索引,比如下图的 key 为 PRIMARY 就是使用了主键索引。
如果查询语句的执行计划里的 key 为 null 说明没有使用索引,那就会全表扫描(type = ALL),这种查询扫描的方式是效率最低档次的,如下图:
这张 product 表只有一个索引就是主键,现在我在表中将 name 设置为普通索引(二级索引)。
这时 product 表就有主键索引(id)和普通索引(name)。假设执行了这条查询语句:
select id from product where id > 1 and name like 'i%';
这条查询语句的结果既可以使用主键索引,也可以使用普通索引,但是执行的效率会不同。这时,就需要优化器来决定使用哪个索引了。
很显然这条查询语句是覆盖索引,直接在二级索引就能查找到结果(因为二级索引的 B+ 树的叶子节点的数据存储的是主键值),就没必要在主键索引查找了,因为查询主键索引的 B+ 树的成本会比查询二级索引的 B+ 的成本大,优化器基于查询成本的考虑,会选择查询代价小的普通索引。
在下图中执行计划,我们可以看到,执行过程中使用了普通索引(name),Exta 为 Using index,这就是表明使用了覆盖索引优化。
经历完优化器后,就确定了执行方案,接下来 MySQL 就真正开始执行语句了,这个工作是由「执行器」完成的。在执行的过程中,执行器就会和存储引擎交互了,交互是以记录为单位的。
接下来,用三种方式执行过程,跟大家说一下执行器和存储引擎的交互过程(PS :为了写好这一部分,特地去看 MySQL 源码,也是第一次看哈哈)。
以本文开头查询语句为例,看看执行器是怎么工作的。
select * from product where id = 1;
这条查询语句的查询条件用到了主键索引,而且是等值查询,同时主键 id 是唯一,不会有 id 相同的记录,所以优化器决定选用访问类型为 const 进行查询,也就是使用主键索引查询一条记录,那么执行器与存储引擎的执行流程是这样的:
至此,这个语句就执行完成了。
举个全表扫描的例子:
select * from product where name = 'iphone';
这条查询语句的查询条件没有用到索引,所以优化器决定选用访问类型为 ALL 进行查询,也就是全表扫描的方式查询,那么这时执行器与存储引擎的执行流程是这样的:
至此,这个语句就执行完成了。
在这部分非常适合讲索引下推(MySQL 5.7 推出的查询优化策略),这样大家能清楚的知道,「下推」这个动作,下推到了哪里。
索引下推能够减少二级索引在查询时的回表操作,提高查询的效率,因为它将 Server 层部分负责的事情,交给存储引擎层去处理了。
举一个具体的例子,方便大家理解,这里一张用户表如下,我对 age 和 reword 字段建立了联合索引(age,reword):
现在有下面这条查询语句:
select * from t_user where age > 20 and reward = 100000;
联合索引当遇到范围查询 (>、<、between、like) 就会停止匹配,也就是 a 字段能用到联合索引,但是 reward 字段则无法利用到索引。具体原因这里可以看这篇:索引常见面试题
那么,不使用索引下推(MySQL 5.7 之前的版本)时,执行器与存储引擎的执行流程是这样的:
可以看到,没有索引下推的时候,每查询到一条二级索引记录,都要进行回表操作,然后将记录返回给 Server,接着 Server 再判断该记录的 reward 是否等于 100000。
而使用索引下推后,判断记录的 reward 是否等于 100000 的工作交给了存储引擎层,过程如下 :
可以看到,使用了索引下推后,虽然 reward 列无法使用到联合索引,但是因为它包含在联合索引(age,reward)里,所以直接在存储引擎过滤出满足 reward = 100000 的记录后,才去执行回表操作获取整个记录。相比于没有使用索引下推,节省了很多回表操作。
当你发现执行计划里的 Extr 部分显示了 “Using index condition”,说明使用了索引下推。
网站题目:执行一条SQL语句,期间发生了什么?
文章出自:http://www.csdahua.cn/qtweb/news19/264669.html
网站建设、网络推广公司-快上网,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网