想要4个9?本文告诉你监控告警如何做

本文转载自微信公众号「脑子进煎鱼了」,作者陈煎鱼。转载本文请联系脑子进煎鱼了公众号。

“你说说,没有仪表盘的车,你敢开吗?”

“没有仪表盘的车开在路上,你怎么知道现在是什么情况?”

“客户说你这车又崩了,咋知道什么时候好的?啥时候出的问题?”

前言

将思考转换到现实的软件系统中,可想而知没有监控系统的情况下,也就是没有 ”仪表盘“ 的情况下实在是太可怕了。

你的故障永远都是你的客户告诉你的,而...在什么时候发生的,你也无法确定,只能通过客户的反馈倒推时间节点,最后从错误日志中得到相对完整的日志信息。

问题

更要命的是你无法掌握主动权,错误日志有可能会有人漏记录,平均修复时间(MTTR)更不用想了,需要从 0.1 开始定位,先看 APP 是哪个模块报错,再猜测是哪个服务导致,再打开链路追踪系统,或是日志平台等。

稍微复杂些的,排查来来往往基本都是半小时、一小时以上,那 4 个 9 肯定是达不到的了,以此几次 P0 几小时怕不是业务绩效也凉凉,因为故障修复的速度实在是太慢了。

那归根到底,想破局怎么办,核心第一步就是要把监控告警的整个生态圈给建设好。

监控定义

常说监控监控,监控的定义就是监测和控制,检测某些事物的变化,以便于进行控制。在常见的软件系统中,大多分为三大观察类别:

  • 业务逻辑:项目所对应的服务其承担的业务逻辑,通常需要对其进行度量。例如:每秒的下单数等。
  • 应用程序:应用程序。例如:统一的基础框架。
  • 硬件资源:服务器资源情况等。例如:Kubernetes 中的 Cadvisor 组件便会提供大量的资源指标。

从软件系统来讲,监控的定义就是收集、处理、汇总,显示关于某个系统的实时量化数据,例如:请求的数量和类型,错误的数量和类型,以及各类调用/处理的耗时,应用服务的存活时间等。

监控目标

知道了监控的定义,了解了监控的作用和具体的实施指标后。我们需要明确的知道,做监控的目标是什么:

从现实层面出发,做监控的初衷,就是希望能够及时的发现线上环境的各种各样奇奇怪怪的问题,为业务的正常运转保驾护航。

因此整体分为上图四项:

  • 预测故障:故障还没出现,但存在异常。监控系统根据流量模型、数据分析、度量趋势来推算应用程序的异常趋势,推算可能出现故障的问题点。
  • 发现故障:故障已经出现,客户还没反馈到一线人员。监控系统根据真实的度量趋势来计算既有的告警规则,发现已经出现故障的问题点。
  • 定位故障:故障已经出现,需要监控系统协助快速定位问题,也就是根因定位(root cause)。此时是需要协调公司内生态圈的多个组件的,例如:链路追踪系统、日志平台、监控系统、治理平台(限流熔断等),根据监控系统所告警出来的问题作为起始锚点,对其进行有特定方向的分析,再形成 ”线索“ 报告,就可以大力的协助开发人员快速的定位问题,发现故障点。
  • 故障恢复:故障已经出现,但自动恢复了,又或是通过自动化自愈了。这种情况大多出现在告警规则的阈值配置的不够妥当,又或是第三方依赖恰好恢复了的场景。

而更值得探讨的的是监控告警的后半段闭环,故障自愈,通过上述三点 “预测故障、发现故障、定位故障”,已经定位到故障了,就可以配合内部组件,实现自动化的 ”自愈“,减少人工介入,提高 MTTR。

因此做监控系统的目标很明确,就是发现问题,解决问题,最好自愈,达到愉快休假,业务安心的目的。

4 个黄金指标

有定义,有目标,那指导呢?

实际上 “业务逻辑、应用程序、硬件资源” 已经成为了一个监控系统所要监控构建的首要目标,绝大部分的监控场景都可以归类进来。

针对这三大项,《Google SRE 运维解密》 也总结出了 4 个黄金指标,在业界广为流传和借鉴:

  • 延迟:服务处理某个请求所需要的时间。
    • 区分成功和失败请求很重要,例如:某个由于数据库连接丢失或者其他后端问题造成的 HTTP 500 错误可能延迟很低。因此在计算整体延迟时,如果将 500 回复的延迟也计算在内,可能会产生误导性的结果。
    • “慢” 错误要比 “快” 错误更糟糕。
  • 流量:使用系统中的某个高层次的指标针对系统负载需求所进行的度量。
    • 对 Web 服务器来讲,该指标通常是每秒 HTTP 请求数量,同时可能按请求类型分类(静态请求与动态请求)。
    • 针对音频流媒体系统来说,指标可能是网络 I/O 速率,或者并发会话数量。
    • 针对键值对存储系统来说,指标可能是每秒交易数量,或每秒的读者操作数量。
  • 错误:请求失败的速率。
    • 显式失败(例如:HTTP 500)。
    • 隐式失败(例如:HTTP 200 回复中包含了错误内容)。
    • 策略原因导致的失败(例如:如果要求回复在 1s 内发出,任何超过 1s 的请求就都是失败请求)。
  • 饱和度:服务容量有多 “满”,通常是系统中目前最为受限的某种资源的某个具体指标的度量,例如:在内存受限的系统中,即为内存;在 I/O 受限的系统中,即为 I/O。
    • 很多系统在达到 100% 利用率之前性能会严重下降,因此可以考虑增加一个利用率目标。
    • 延迟增加是饱和度的前导现象,99% 的请求延迟(在某一个小的时间范围内,例如一分钟)可以作为一个饱和度早期预警的指标。
    • 饱和度需要进行预测,例如 “看起来数据库会在 4 小时内填满硬盘”。

如果已经成功度量了这四个黄金指标,且在某个指标出现故障时能够发出告警(或者快要发生故障),那么在服务的监控层面来讲,基本也就满足了初步的监控诉求。

也就是可以做到知道了是什么出问题,问题出在哪里,单这一步就已经提高了不少定位问题的时间效率,是一个从 0 到 1 的起步阶段。

实践案例

知道是什么(定义),为什么要做(目标),做的时候需要什么(4 个黄金指标)后,还缺乏的是一个承载这些基础应用、业务思考的平台,让架构+运维+业务共同在上面施展拳脚。

公司内部至少需要有一个监控告警管理平台。

平台搭建

在目前云原生火热的情况下,Kubernetes 生态中大多惯用 Prometheus,因此 Prometheus+Grafana+AlertManger 成为了一大首选,业内占比也越来越高,其基本架构如下:

  • Prometheus Server:用于收集指标和存储时间序列数据,并提供一系列的查询和设置接口。
  • Grafana:用于展示各类趋势图,通过 PromQL 从 Prometheus 服务端查询并构建图表。
  • Alertmanager:用于处理告警事件,从 Prometheus 服务端接收到 alerts 后,会进行去重,分组,然后路由到对应的Receiver,发出报警。

这块具体的基本知识学习和搭建可详见我写的 Prometheus 系列,本文不再赘述。

监控指标

在平台搭建完毕后,常要做的第一步,那就是规划你整个系统的度量指标,结合 Google SRE 的 4 个黄金指标,可以初步划分出如下几种常用类型:

  • 系统层面:Kubernetes Node、Container 等指标,这块大多 Cadvisor 已采集上报,也可以安装 kube-state-metrics 加强,这样子就能够对 Kubernetes 和应用程序的运行情况有一个较好的观察和告警。
  • 系统层面:针对全链路上的所有基础组件(例如:MySQL、Redis 等)安装 exporter,进行采集,对相关基础组件进行监控和告警。
  • 业务服务:RPC 方法等的 QPS 记录。可以保证对业务服务的流量情况把控,且后续可以做预测/预警的一系列动作,面对突发性流量的自动化扩缩容有一定的参考意义。
  • 业务服务:RPC 方法等的错误情况。能够发现应用程序、业务的常见异常情况,但需要在状态/错误码规划合理的情况下,能够起到较大的作用,有一定困难,要在一开始就做对,否则后面很难扭转。
  • 应用程序:各类远程调用(例如:RPC、SQL、HTTP、Redis)的调用开销记录。最万金油的度量指标之一,能够在很多方面提供精确的定位和分析,Web 应用程序标配。常见于使用 P99/95/90。
  • 语言级别:内部分析记录,例如:Goroutines 数量、Panic 情况等,常常能发现一些意想不到的泄露情况和空指针调用。没有这类监控的话,很有可能一直都不会被发现。

指标落地

第一步完成了整个系统的度量指标规划后,第二步就是需要确确实实的把指标落地了。

无论是统一基础框架的打点,系统组件的 exporter,大多涉及了公司级的跨多部门协作,这时候需要更多的耐心和长期主义和不断地对方向纠错,才能尝到体系建设后的果实。

告警体系

在完成监控指标和体系的建设后,告警如何做,成为了一大难题,再好的监控体系,闭环做不好,就无法发挥出很大的作用。因此我们给告警定义一些准则:

告警不要太多,否则会导致“狼来了”。

告警出现时,应当要具体操作某些事情,是亟待解决的。

告警出现时,应当要进行某些智力分析,不应该是机械行为。

不需要人工响应/处理的告警规则,应当直接删除。

告警出现时,你下意识要再观察观察的告警,要直接进行调整。

告警应当足够的简单,直观,不需要猜。

简单来讲就是告警要少,事件需要解决,处理要人工介入。否则右拐自动化自愈恢复可能更香。

告警给谁?

另外一个难题就是:谁诱发处理的告警,要通知给谁?

这是一个很需要斟酌的问题,在告警的规范上,尽可能遵循最小原则,再逐级上报。也就是先告警给 on-call 人,若超出 X 分钟,再逐级上报到全业务组,再及其负责人,一级级跟踪,实现渐进式告警。

逐级上报,响应即跟踪,明确问题点的责任人。而逐级上报的数据来源,可通过员工管理系统来获取,在员工管理系统中有完整的上下级关系(类似 OA 审批上看到的流程节点),但如果该系统没有开放 API 之类的,那可能你只能通过其他方式来获取了。

例如像是通过企业微信获取部门关系和人员列表,再手动设置上下级关联关系,也可以达到目的,且在现实世界中,有可能存在定制化的诉求。

规范建立

即使所以监控体系、指标落地、告警体系都建立起来了,也不能掉以轻心。实际上在成为事实标准后,你仍然需要尽快为告警后奔跑,将整个闭环搭建起来,也就是故障管理。

与公司内部的流程管理的同学或 QA,一起设立研发底线的规范,进行细致的告警分级识别,告警后的汇总运营分析,形成一个真正意义上的故障管理规范。

否则最后可能会疲于奔命,人的时间精力总是有限的,而面对整个公司的监控告警的搭建,体系上与业务组的共建,督促告警响应,极有可能最后会疲于奔命,即使真的有一定用处,在杂乱无人收敛的告警中最后流于形式。

总结

监控告警的体系生态做来有意义吗?

这是必然的,成熟且规范的监控告警的体系生态是具有极大意义,可以提前发现问题,定位问题,解决问题。甚至这个问题的说不定还不需要你自己处理,做多组件的闭环后,直接实施自动化的服务自愈就可以了,安心又快快乐乐的过国庆节,是很香的。

而故障管理的闭环实施后,就可以分析业务服务的告警情况,结合 CI/CD 系统等基础平台,每季度自动化分析实施运营报表,帮助业务发现更多的问题,提供其特有的价值。

但,想真正做到上述所说的成熟且规范,业务共建,有难度,需要多方面认同和公司规范支撑才能最佳实现。因此共同认可,求同存异,多做用户反馈分析也非常重要。

分享标题:想要4个9?本文告诉你监控告警如何做
文章路径:http://www.csdahua.cn/qtweb/news17/449017.html

成都网站优化推广公司_创新互联,为您提供服务器托管品牌网站建设商城网站小程序开发品牌网站设计Google

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网