R 还是 Python ? Python 脚本模仿易使用的 R 风格函数,使得数据统计变得简单易行。
为广安等地区用户提供了全套网页设计制作服务,及广安网站建设行业解决方案。主营业务为网站制作、网站建设、广安网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!
“Python vs. R” 是数据科学和机器学习的现代战争之一。毫无疑问,近年来这两者发展迅猛,成为数据科学、预测分析和机器学习领域的***编程语言。事实上,根据 IEEE 最近的一篇文章,Python 已在 ***编程语言排行榜 中超越 C++ 成为***的语言,并且 R 语言也稳居前 10 位。
但是,这两者之间存在一些根本区别。R 语言设计的初衷主要是作为统计分析和数据分析问题的快速原型设计的工具,另一方面,Python 是作为一种通用的、现代的面向对象语言而开发的,类似 C++ 或 Java,但具有更简单的学习曲线和更灵活的语言风格。因此,R 仍在统计学家、定量生物学家、物理学家和经济学家中备受青睐,而 Python 已逐渐成为日常脚本、自动化、后端 Web 开发、分析和通用机器学习框架的***语言,拥有广泛的支持基础和开源开发社区。
R 作为函数式编程语言的本质为用户提供了一个极其简洁的用于快速计算概率的接口,还为数据分析问题提供了必不可少的描述统计和推论统计方法(LCTT 译注:统计学从功能上分为描述统计学和推论统计学)。例如,只用一个简洁的函数调用来解决以下问题难道不是很好吗?
R 编程环境可以完成所有这些工作。
另一方面,Python 的脚本编写能力使分析师能够在各种分析流程中使用这些统计数据,具有***的复杂性和创造力。
要结合二者的优势,你只需要一个简单的 Python 封装的库,其中包含与 R 风格定义的概率分布和描述性统计相关的最常用函数。 这使你可以非常快速地调用这些函数,而无需转到正确的 Python 统计库并理解整个方法和参数列表。
我编写了一个 Python 脚本 ,用 Python 简单统计分析定义了最简洁和最常用的 R 函数。导入此脚本后,你将能够原生地使用这些 R 函数,就像在 R 编程环境中一样。
此脚本的目标是提供简单的 Python 函数,模仿 R 风格的统计函数,以快速计算密度估计和点估计、累积分布和分位数,并生成重要概率分布的随机变量。
为了延续 R 风格,脚本不使用类结构,并且只在文件中定义原始函数。因此,用户可以导入这个 Python 脚本,并在需要单个名称调用时使用所有功能。
请注意,我使用 mimic 这个词。 在任何情况下,我都声称要模仿 R 的真正的函数式编程范式,该范式包括深层环境设置以及这些环境和对象之间的复杂关系。 这个脚本允许我(我希望无数其他的 Python 用户)快速启动 Python 程序或 Jupyter 笔记本程序、导入脚本,并立即开始进行简单的描述性统计。这就是目标,仅此而已。
如果你已经写过 R 代码(可能在研究生院)并且刚刚开始学习并使用 Python 进行数据分析,那么你将很高兴看到并在 Jupyter 笔记本中以类似在 R 环境中一样使用一些相同的知名函数。
无论出于何种原因,使用这个脚本很有趣。
首先,只需导入脚本并开始处理数字列表,就好像它们是 R 中的数据向量一样。
from R_functions import *
lst=[20,12,16,32,27,65,44,45,22,18]
假设你想从数据向量计算 Tuckey 五数摘要。 你只需要调用一个简单的函数 fivenum
,然后将向量传进去。 它将返回五数摘要,存在 NumPy 数组中。
lst=[20,12,16,32,27,65,44,45,22,18]
fivenum(lst)
> array([12. , 18.5, 24.5, 41. , 65. ])
或许你想要知道下面问题的答案:
假设一台机器平均每小时输出 10 件成品,标准偏差为 2。输出模式遵循接近正态的分布。 机器在下一个小时内输出至少 7 个但不超过 12 个单位的概率是多少?
答案基本上是这样的:
使用 pnorm
,你可以只用一行代码就能获得答案:
pnorm(12,10,2)-pnorm(7,10,2)
> 0.7745375447996848
或者你可能需要回答以下问题:
假设你有一个不公平硬币,每次投它时有 60% 可能正面朝上。 你正在玩 10 次投掷游戏。 你如何绘制并给出这枚硬币所有可能的胜利数(从 0 到 10)的概率?
只需使用一个函数 dbinom
就可以获得一个只有几行代码的美观条形图:
probs=[]
import matplotlib.pyplot as plt
for i in range(11):
probs.append(dbinom(i,10,0.6))
plt.bar(range(11),height=probs)
plt.grid(True)
plt.show()
R 提供了一个非常简单直观的接口,可以从基本概率分布中快速计算。 接口如下:
在我们的实现中,我们坚持使用此接口及其关联的参数列表,以便你可以像在 R 环境中一样执行这些函数。
脚本中实现了以下 R 风格函数,以便快速调用。
显然,这是一项正在进行的工作,我计划在此脚本中添加一些其他方便的R函数。 例如,在 R 中,单行命令 lm
可以为数字数据集提供一个简单的最小二乘拟合模型,其中包含所有必要的推理统计(P 值,标准误差等)。 这非常简洁! 另一方面,Python 中的标准线性回归问题经常使用 Scikit-learn 库来处理,此用途需要更多的脚本,所以我打算使用 Python 的 statsmodels 库合并这个单函数线性模型来拟合功能。
文章名称:如何用Python编写你喜爱的R函数
分享链接:http://www.csdahua.cn/qtweb/news12/263312.html
网站建设、网络推广公司-快上网,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网