Linux Tap设备是Linux中一个非常重要的网络设备,它允许我们在不使用物理网卡的情况下,创建虚拟网络设备。它的应用非常广泛,如网络地址转换(NAT)、网桥、虚拟专用网络(VPN)等等。但是,在实际应用中,我们经常会遇到各种问题,如网络延迟、网络连接失败等等。这些问题的原因非常复杂,本文将从诊断的角度,介绍如何快速定位Linux Tap设备的问题原因。
一、检查系统日志
在Linux中,系统日志是一个非常重要的工具。通过查看系统日志,我们可以了解系统的运行情况,包括系统启动、网络连接、程序运行等等。对于Linux Tap设备问题的诊断,我们首先需要检查系统日志,看看是否有相关的错误信息。
在大多数Linux发行版中,系统日志通常存储在/var/log/messages或/var/log/syslog文件中。我们可以使用tl或less命令查看最新的系统日志。例如,使用tl命令查看/var/log/messages文件:
“`
$ tl -f /var/log/messages
“`
如果我们在使用Tap设备的过程中,发现网络连接失败,可以使用grep命令查找相关的错误信息,例如:
“`
$ grep -i ‘tap’ /var/log/messages
“`
这样我们就可以筛选出与Tap设备相关的错误信息了。在Linux中,许多错误信息都会显示在系统日志中,因此检查系统日志是诊断Tap设备问题的一个重要步骤。
二、检查网络配置
Linux Tap设备依赖于网络配置,如果网络配置不正确,就会导致网络连接失败。因此,在诊断Tap设备问题时,需要仔细检查网络配置,包括IP地址、网关、DNS等等。我们可以使用ifconfig命令查看Tap设备的网络配置信息,例如:
“`
$ ifconfig tap0
tap0: flags=4099 mtu 1500
ether 00:11:22:33:44:55 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
“`
可以看到,该Tap设备的名称为tap0,其IP地址、网关等信息并未显示。如果我们需要查看Tap设备的详细网络配置信息,可以使用ip命令,例如:
“`
$ ip addr show tap0
3: tap0: mtu 1500 qdisc fq_codel state UNKNOWN group default qlen 1000
link/ether 00:11:22:33:44:55 brd ff:ff:ff:ff:ff:ff
inet 192.168.1.100/24 brd 192.168.1.255 scope global tap0
valid_lft forever preferred_lft forever
“`
可以看到,该Tap设备的IP地址为192.168.1.100,掩码为24位,网关等信息并未显示。如果我们在检查网络配置时发现配置错误,可以使用ifconfig或ip命令进行调整,例如:
“`
$ ifconfig tap0 192.168.1.100 netmask 255.255.255.0 up
“`
或
“`
$ ip addr add 192.168.1.100/24 dev tap0
$ ip link set dev tap0 up
“`
三、检查路由表
在Linux中,路由表是一个非常重要的概念,它决定了网络数据包的转发方式。如果路由表配置不正确,就会导致网络连接失败。在诊断Tap设备问题时,需要仔细检查路由表信息,包括默认路由、静态路由等。我们可以使用route命令查看路由表信息,例如:
“`
$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.1.1 0.0.0.0 UG 100 0 0 eth0
192.168.1.0 0.0.0.0 255.255.255.0 U 100 0 0 eth0
“`
可以看到,该主机的默认路由为192.168.1.1,静态路由表为空。如果我们在检查路由表时发现配置错误,可以使用route命令进行调整,例如:
“`
$ route add -net 192.168.2.0 netmask 255.255.255.0 gw 192.168.1.254
“`
这样会添加一条静态路由,将网络192.168.2.0/24的数据包通过网关192.168.1.254转发。
四、检查网络流量
在Linux中,网络流量是非常重要的,它决定了网络质量和性能。如果网络流量异常,就会导致网络连接失败等问题。在诊断Tap设备问题时,需要仔细检查网络流量,包括流量状态、流量速度等。我们可以使用tcpdump命令查看网络流量,例如:
“`
$ tcpdump -i tap0
“`
这样会抓取该Tap设备的所有网络数据包。如果我们在检查网络流量时发现异常,可以使用tcpdump或其他网络监控工具进一步分析,找出流量异常的原因。
结语
相关问题拓展阅读:
tracer 是一个高级的性能分析和诊断工具,但是不要让这名词唬住你,如果你使用过 strace 和tcpdump,其实你就已经使用过 tracer 了。系统 tracer 可以获取更多的系统调用和数据包。它们通常能跟踪任意的内核和应用程序。
有太多的 linux tracer 可以选择。每一种都有其官方的(或非官方的)的卡通的独角兽吉祥物,足够撑起一台”儿童剧”了。
那么我们应该使用哪个 tracer 呢?
我会为两类读者回答这个问题,大部分人和性能/内核工程师。过一段时间这些可能会发生变化,我会持续跟进并补充,大概会一年更新一次。
多数人
多数人 (开发者,系统管理员,开发管理者,运维人员,评测人员,等等) 不关心系统追踪器的细节。下面是对于追踪器你应该知道和做的:
1. 使用perf_events分析CPU性能
使用 perf_events 做 CPU 性能分析。性能指标可以使用flame graph 等工具做可视化。
git clone –depth 1
perf record -F 99 -a -g — sleep 30
perf script | ./FlameGraph/stackcollapse-perf.pl | ./FlameGraph/flamegraph.pl > perf.svg
Linux perf_events (又称 “perf”,同命令名) 是 Linux 用户的官方追踪器和性能分析器。内置于内核代码,有很好维护(近来获得快速增强),通常通过 linux 命令行工具包添加。
perf 有很多功能,如果只能推荐一个,我选择 CPU 性能分析。尽陵友管这只是采样,而不是从技术上追踪事件。最难的部分是获取完整的栈和信息,我为 java 和 node.js 做的一个演讲 Linux Profiling at Netflix中已经说过这个问题
2.了解其他的Tracer
正如我一个朋友说的:“你不需要知道如何操作 X 射线机器,但是一旦你吞了一枚硬币,你得知道这得去做 X 射线”,你应该了解各种 tracer 都能做什么,这样就能在你工作中真正需要 tracer 的时候,你既可以选择稍后学习使用,也可以雇相应的人来完成。
简短来说:几乎所有的东西都可以使用 tracer 来尺手槐进行分析和跟踪。如,文件系统,网络处理器,硬件驱动器,全部的应用程序。可以看一下我的个人网站上关于 ftrace的文章,还有我写的薯蚂关于perf_events 文档介绍,可以做为一个追踪(或者性能分析)的例子。
3. 寻求前端支持工具
如果你正想买一个能支持跟踪 Linux 的性能分析工具(有许多卖这类工具的公司)。想像一下,只需要直接点击一下界面就能“洞察”整个系统内核,包括隐藏的不同堆栈位置的热图,我在Monitorama talk 中介绍了一个这样带图形界面的工具。
我开源了一些我自己开发的前端工具,尽管只是 CLI (命令行界面)而不是(图形界面)。这些工具也会让人们更加快速容易的使用 tracer。比如下面的例子,用我的 perf_tool,跟踪一个新进程:
# ./execsnoopTracing exec()s. Ctrl-C to end.
PID PPID ARGS
man ls
preconv -e UTF-8
pager -s
nroff -mandoc -rLL=164n -rLT=164n -Tutf8
在 Netflix 上,我们创建了一个 Vector,一个分析工具的实例同时也是 Linux 上的 tracer 的最终前端。
致性能或内核工程师
我们的工作变的越来越困难,很多的人会问我们怎么样去追踪,哪种路径可以用!为了正确理解一个路径,你经常需要花上至少100个小时才能做到。理解所有的 linux 路径去做出理性的决定是一个浩大的工程。(我可能是唯一一个接近做到这件事情的人)
这里是我的建议,可以二选其一:
A) 选中一个全能的路径,并且使它标准化,这将涉及花费大量的时间去弄清楚它在测试环境中的细微差别和安全性。我现在推荐 SystemTap 的最新版本(ie,从源代码构建)。我知道有些公司已经选用 LTTng,而且他们用的很好,尽管它不是非常的强大(虽然它更安全)。Sysdig 可以成为另一个候选如果它可以增加追踪点或者 kprobes。
B) 遵循我上面提供的流程图,它将意味着尽可能更多的使用 ftrace 或者 perf_event, eBPF 会得到整合,之后其他的路径像 SystemTap/LTTng 会去填补这个空白。这就是我目前在 Netflix 做的工作。
tracer 的评论:
1. ftrace
我喜欢用 ftrace,它是内核 hacker 的选择,内置于系统内核,可以使用跟踪点(静态检查点),能调用内核 kprobes 和 uprobes 调试工具。并且提供几个这样的功能:带可选过滤器和参数的事件追踪功能;在内核中进行统计的事件计数和定时功能;还有函数流程遍历的功能。可以看一下内核代码中 ftrace.txt 例子了解一下。ftrace 由 /sys 控制,仅支持单一的 root 用户使用(但是你可以通过缓冲区实例破解以支持多用户)。某些时候 Ftrace 的操作界面非常繁琐,但是的确非常“hack”,而且它有前端界面。Steven Rostedt,ftace 的主要作者,创建了 trace-cmd 命令工具,而我创建了 perf 的工具集。我对这个工具更大的不满就是它不可编程。举例来说,你不能保存和获取时间戳,不能计算延迟,不能把这些计算结果保存成直方图的形式。你需要转储事件至用户级别,并且花一些时间去处理结果。ftrace 可以通过 eBPF 变成可编程的。
2.perf_events
perf_events 是 Linux 用户的主要跟踪工具,它内置在内核源码中,通常通过 linux-tools-commom 加入。也称“perf”,同前端工具名称,通常用来跟踪和转储信息到一个叫做 perf.data 的文件中,perf.data 文件相当于一个动态的缓冲区,用来保存之后需要处理的结果。ftrace 能做到的,perf_events 大都也可以做到,perf-events 不能做函数流程遍历,少了一点儿“hack”劲儿(但是对于安全/错误检查有更好的支持)。它可以进行 CPU 分析和性能统计,用户级堆栈解析,也可以使用对于跟踪每行局部变量产生的调试信息。它也支持多用户并发操作。和 ftrace 一样也不支持可编程。如果要我只推荐一款 tracer,那一定是 perf 了。它能解决众多问题,并且它相对较安全。
3. eBPF
extended Berkeley Packet Filter(eBPF)是一个可以在事件上运行程序的高效内核虚拟机(JIT)。它可能最终会提供 ftrace 和 perf_events 的内核编程,并强化其他的 tracer。这是 Alexei Starovoitov 目前正在开发的,还没有完全集成,但是从4.1开始已经对一些优秀的工具有足够的内核支持了,如块设备I/O的延迟热图。可参考其主要作者 Alexei Starovoitov 的BPF slides和eBPF samples。
4. SystemTap
SystemTap 是最强大的tracer。它能做所有事情,如概要分析,跟踪点,探针,uprobes(来自SystemTap),USDT和内核编程等。它将程序编译为内核模块,然后加载,这是一种获取安全的巧妙做法。它也是从tree发展而来,在过去有很多问题(多的可怕)。很多不是 SystemTap 本身的错——它常常是之一个使用内核追踪功能,也是之一个碰到 bug 的。SystemTap 的最新版本好多了(必须由源代码编译),但是很多人仍然会被早期版本吓到。如果你想用它,可先在测试环境中使用,并与irc.freenode.net上 的 #systemtap 开发人员交流。(Netflix 有容错机制,我们已经使用了 SystemTap,但是可能我们考虑的安全方面的问题比你们少。)我更大的不满是,它似乎认为你有常常没有的内核 debug 信息。实际上没有它也能做很多事情,但是缺少文档和例子(我必须自己全靠自己开始学习)。
5. LTTng
LTTng 优化了事件采集,这比其他 tracers 做得好。它从 tree 发展而来,它的核心很简单:通过一组小规模的固定指令集将事件写入追踪缓冲区,这种方式使它安全、快速,缺点是它没有内核编码的简单途径。我一直听说这不是一个大问题,因为尽管需要后期处理,它也已经优化到可以充分的度量。此外,它还首创了一个不同的分析技术,更多对所有关注事件的黑盒记录将稍后以 GUI 的方式进行研究。我关心的是前期没有考虑到要录制的事件缺失问题如何解决,但我真正要做的是花更多时间来看它在实践中用的怎么样。这是我花的时间最少的一个 tracer(没有什么特殊原因)。
6. Ktap
ktap 在过去是一款前景很好的 tracer,它使用内核中的 lua 虚拟机处理,在没有调试信息的情况下在嵌入式设备上运行的很好。它分为几个步骤,并在有一段时间似乎超过了 Linux 上所有的追踪器。然后 eBPF 开始进行内核集成,而 ktap 的集成在它可以使用 eBPF 替代它自己的虚拟机后才开始。因为 eBPF 仍将持续集成几个月,ktap 开发者要继续等上一段时间。我希??今年晚些时候它能重新开发。
7. dtrace4linux
dtrace4linux 主要是 Paul Fox 一个人在业余时间完成的,它是 Sun DTrace 的 Linux 版本。它引入瞩目,还有一些 provider 可以运行,但是从某种程度上来说还不完整,更多的是一种实验性的工具(不安全)。我认为,顾忌到许可问题,人们会小心翼翼的为 dtrace4linux 贡献代码:由于当年 Sun 开源DTrace 使用的是 CDDL 协议,而 dtrace4linux 也不大可能最终进入 Linux kernel。Paul 的方法很可能会使其成为一个 add-on。我很乐意看到 Linux 平台上的 DTrace 和这个项目的完成,我认为当我加入 Netflix 后将会花些时间来协助完成这个项目。然而,我还是要继续使用内置的 tracers,如 ftrace 和 perf_events。
8.OL DTrace
Oracle Linux DTrace为了将 DTrace 引入 Linux,特别是 Oracle Linux,做出了很大的努力。这些年来发布的多个版本表明了它的稳定进展。开发者们以一种对这个项目的前景看好的态度谈论着改进 DTrace 测试套件。很多有用的 provider 已经完成了,如:syscall, profile, sdt, proc, sched 以及 USDT。我很期待 fbt(function boundary tracing, 用于内核动态跟踪)的完成,它是 Linux 内核上非常棒的 provider。OL DTrace 最终的成功将取决于人们对运行 Oracle Linux(为技术支持付费)有多大兴趣,另一方面取决于它是否完全开源:它的内核元件是开源的,而我没有看到它的用户级别代码。
9. sysdig
sysdig是一个使用类tcpdump语法来操作系统事件的新tracer,它使用lua提交进程。它很优秀,它见证了系统跟踪领域的变革。它的局限性在于它只在当前进行系统调用,在提交进行时将所有事件转储为用户级别。你可以使用系统调用做很多事情,然而我还是很希望它能支持跟踪点、kprobe和uprobe。我还期待它能支持eBPF做内核摘要。目前,sysdig开发者正在增加容器支持。留意这些内容。
延伸阅读
我关于 tracer 的工作包括:
ftrace:我的 perf-tools工具集(参考实例目录);我在 lwn.net 上的 关于ftrace的文章;LISA14的发言;还有帖子:函数计数, iosnoop,opensnoop,execsnoop,TCP转发, uprobes 以及USDT。
perf_evenets:我的网页 perf_events实例;SCALE上的发言Netflix的Linux性能分析;还有帖子CPU采样,静态追踪点,热点图,计数,内核行追踪,off-CPU时间图。
eBPF:帖子eBPF:迈出一小步,和一些BPF工具(我需要发布更多)。
SystemTap:我很久以前写了一篇有点过期的帖子使用SystemTap。最近,我发布了一些工具systemtap-lwtools来演示如何在没有内核诊断信息的情况下使用SystemTap。
LTTng:我只花了一点时间,还不足以发表任何内容。
ktap:我的网页ktap实例包含一些早期版本的单行小程序和脚本。
dtrace4linux:我在系统性能一书中给出了一些实例,并曾经开发了一些小的修复程序,如timestamps。
OL DTrace:由于它直接由DTrace转变而来,很多我早期关于DTrace的工作都有相关性(如果在这里给出链接的话就太多了,可以在我的主页上搜索)。当它更完善时,我会开发一些特殊工具。
sysdig:我向 fileslower 和 subsecond offset spectrogram 贡献了代码。
其他:我写了关于strace 的注意事项。
请不要有更多的 tracer!如果你想知道为什么 Linux 不仅仅只有一个 tracer,或者只用本身的DTrace,你可以在我的演讲稿从DTrace到Linux中找到答案,从28张幻灯片开始。
Linux 中的设备有2种类型:字符设备(无缓冲且只能顺序存取)、块设备(有缓冲且磨洞桐可以随机存取)。每个字符设备和块设备都必须有主、次设备号,主设备号相同的设备是同类设备(使用同一个驱动程序)。这些设备中,有些设备是对实际存在的物理硬件的抽象,而有些设备则是内核自身提供的功能(不依赖于特定的物理硬件,又称为”虚拟设备”)。每个设备在 /dev 目录下都有一个对应的文件(节点)。可以通过 cat /proc/devices 命令查看当前已经加载的设备驱动程序的主设备号。内核能够识别的所有设备都记录在原码树下的 Documentation/devices.txt 文件中。在 /dev 目录下除了字符设备和块设备节点之外还通常还会存在:FIFO管道、Socket、软/硬连接、目录。这些东西没有主/次设备号。
了解这些设备的最基本要求就是对 每个设备文件的含义了如指掌,下面就医列表的形式列出常见的设备文件以及相应的含义(比较偏僻的就省略了):
主设备号 设备类型
次设备号=文件名 简要说明
0 未命名设备(例如:挂载的非设备)
0 = 未空设备号保留
1 char 内存设备
1 = /dev/mem 直接存取物理瞎坦内存
2 = /dev/kmem 存取经过内核虚拟之后的内存
3 = /dev/null 空设备。任何写入都将被直接丢弃,任何读取都将得到EOF。
4 = /dev/port 存取 I/O 端口
5 = /dev/zero 零字节源,只能读取到无限多的零字节。
7 = /dev/full 满设备。任何写入都将失败,并把errno设为ENOSPC以表示没有剩余空间。
8 = /dev/random 随机数发生器。完全由用户的输入来产生随机数。
如果用户停止所有动作,则停止产生新的随机数。
9 = /dev/urandom 更快,但是不够安全的随机数发生器。尽可能由用户的输入来产生随机数,
如果用户停止所有动作,则把已经产生的随机数做为种子来产生新的随机数。
10 = /dev/aio 异步 I/O 通知接口
11 = /dev/kmsg 任何对该文件的写入都将作为 printk 的输出
1 block RAM disk
0 = /dev/ram0 第1个 RAM disk (initrd只能使用ram0)
1 = /dev/ram1 第2个 RAM disk
…
200 = /dev/ram200 第200个 RAM disk
4 char TTY(终端)设备
0 = /dev/tty0 当前虚拟控制台
1 = /dev/tty1 第1个虚拟控制台
…
63 = /dev/tty63 第63个虚拟控制台
4 block 如果根文件系统以是以只读方式挂载的,那么就不可能创建真正的设备节颤颤点,
此时就使用该设备作为动态分配的主(major)设备的别名
0 = /dev/root
5 char 其他 TTY 设备
0 = /dev/tty 当前 TTY 设备
1 = /dev/console 系统控制台
2 = /dev/ptmx 所有 PTY master 的复用器
7 char 虚拟控制台捕捉设备(这些设备既允许读也允许写)
0 = /dev/vcs 当前虚拟控制台(vc)的文本内容
1 = /dev/vcs1 tty1 的文本内容
…
63 = /dev/vcs63 tty63 的文本内容
128 = /dev/vcsa 当前虚拟控制台(vc)的文本/属性内容
129 = /dev/vcsa1 tty1 的文本/属性内容
…
191 = /dev/vcsa63 tty63 的文本/属性内容
7 block 回环设备(用一个普通的磁盘文件来模拟一个块设备)
对回环设备的绑定由 mount(8) 或 losetup(8) 处理
0 = /dev/loop0 第1个回环设备
1 = /dev/loop1 第2个回环设备
…
8 block SCSI 磁盘(0-15)
0 = /dev/sda 第1个 SCSI 磁盘(整个磁盘)
16 = /dev/sdb 第2个 SCSI 磁盘(整个磁盘)
32 = /dev/sdc 第3个 SCSI 磁盘(整个磁盘)
…
240 = /dev/sdp 第16个 SCSI 磁盘(整个磁盘)
分区表示方法如下(以第3个 SCSI 磁盘为例)
33 = /dev/sdc1 第1个分区
34 = /dev/sdc2 第2个分区
…
47 = /dev/sdc15 第15个分区
对于Linux/i386来说,分区1-4是主分区,5-15是逻辑分区。
9 block Metadisk(RAID)设备
0 = /dev/md0 第1组 metadisk
1 = /dev/md1 第2组 metadisk
…
metadisk 驱动用于将同一个文件系统分割到多个物理磁盘上。
10 char 非串口鼠标,各种杂项设备和特性
1 = /dev/psaux PS/2鼠标
131 = /dev/temperature 机器内部温度
134 = /dev/apm_bios APM(高级电源管理) BIOS
135 = /dev/rtc 实时时钟(Real Time Clock)
144 = /dev/nvram 非易失配置 RAM
162 = /dev/bus 系统管理总线(System Management Bus)
164 = /dev/ipmo Intel的智能平台管理(Intelligent Platform Management)接口
173 = /dev/ipmikcs 智能平台管理(Intelligent Platform Management)接口
175 = /dev/agpgart AGP图形地址重映射表(Graphics Address Remapping Table)
182 = /dev/perfctr 性能监视计数器
183 = /dev/hwrng 通用硬件随机数发生器
184 = /dev/cpu/microcode CPU微代码更新接口
186 = /dev/atomicps 进程状态数据的原子快照
188 = /dev/buios Bus(系统管理总线) BIOS
200 = /dev/net/tun TAP/TUN 网络设备(TAP/TUN以软件的方式实现了网络设备)
TAP模拟了以太网帧(第二层),TUN模拟了IP包(第三层)。
202 = /dev/emd/ctl 增强型 Metadisk RAID (EMD) 控制器
220 = /dev/mptctl Message passing technology (MPT) control
223 = /dev/input/uinput 用户层输入设备驱动支持
227 = /dev/mcelog X86_64 Machine Check Exception driver
228 = /dev/hpet HPET driver
229 = /dev/fuse Fuse(用户空间的虚拟文件系统)
231 = /dev/snapshot 系统内存快照
232 = /dev/kvm 基于内核的虚构机(基于AMD SVM和Intel VT硬件虚拟技术)
11 block SCSI CD-ROM 设备
0 = /dev/scd0 第1个 SCSI CD-ROM
1 = /dev/scd1 第2个 SCSI CD-ROM
…
13 char 核心输入设备
32 = /dev/input/mouse0 第1个鼠标
33 = /dev/input/mouse1 第2个鼠标
…
62 = /dev/input/mouse30 第31个鼠标
63 = /dev/input/mice 所有鼠标的统一
64 = /dev/input/event0 第1个事件队列
65 = /dev/input/event1 第2个事件队列
…
95 = /dev/input/event1 第32个事件队列
21 char 通用 SCSI 设备(通常是SCSI光驱)
0 = /dev/sg0 第1个通用 SCSI 设备
1 = /dev/sg1 第2个通用 SCSI 设备
…
29 char 通用帧缓冲(frame buffer)设备
0 = /dev/fb0 第1个帧缓冲设备
1 = /dev/fb1 第2个帧缓冲设备
…
31 = /dev/fb31 第32个帧缓冲设备
30 char iBCS-2 兼容设备
0 = /dev/socksys 套接字访问接口
1 = /dev/spx SVR3 本地 X 接口
32 = /dev/inet/ip 网络访问接口
33 = /dev/inet/icmp
34 = /dev/inet/ggp
35 = /dev/inet/ipip
36 = /dev/inet/tcp
37 = /dev/inet/egp
38 = /dev/inet/pup
39 = /dev/inet/udp
40 = /dev/inet/idp
41 = /dev/inet/rawip
此外,iBCS-2 还需要下面的连接必须存在
/dev/ip -> /dev/inet/ip
/dev/icmp -> /dev/inet/icmp
/dev/ggp -> /dev/inet/ggp
/dev/ipip -> /dev/inet/ipip
/dev/tcp -> /dev/inet/tcp
/dev/egp -> /dev/inet/egp
/dev/pup -> /dev/inet/pup
/dev/udp -> /dev/inet/udp
/dev/idp -> /dev/inet/idp
/dev/rawip -> /dev/inet/rawip
/dev/inet/arp -> /dev/inet/udp
/dev/inet/rip -> /dev/inet/udp
/dev/nfsd -> /dev/socksys
/dev/X0R -> /dev/null
36 char Netlink 支持
0 = /dev/route 路由, 设备更新, kernel to user
3 = /dev/fwmonitor Firewall packet 复制
59 char sf 防火墙模块
0 = /dev/firewall 与 sf 内核模块通信
65 block SCSI 磁盘(16-31)
0 = /dev/sdq 第17个 SCSI 磁盘(整个磁盘)
16 = /dev/sdr 第18个 SCSI 磁盘(整个磁盘)
32 = /dev/sds 第19个 SCSI 磁盘(整个磁盘)
…
240 = /dev/sdaf 第32个 SCSI 磁盘(整个磁盘)
66 block SCSI 磁盘(32-47)
0 = /dev/sdag 第33个 SCSI 磁盘(整个磁盘)
16 = /dev/sdah 第34个 SCSI 磁盘(整个磁盘)
32 = /dev/sdai 第35个 SCSI 磁盘(整个磁盘)
…
240 = /dev/sdav 第48个 SCSI 磁盘(整个磁盘)
89 char I2C 总线接口
0 = /dev/i2c-0 第1个 I2C 适配器
1 = /dev/i2c-1 第2个 I2C 适配器
…
98 block 用户模式下的虚拟块设备(分区处理方式与 SCSI 磁盘相同)
0 = /dev/ubda 第1个用户模式块设备
16 = /dev/udbb 第2个用户模式块设备
…
103 block 审计(Audit)设备
0 = /dev/audit 审计(Audit)设备
char Unix98 PTY master
这些设备不应当存在设备节点,而应当通过 /dev/ptmx 接口访问。
char Unix98 PTY slave
这些设备节点是自动生成的(伴有适当的权限和模式),不能手动创建。
方法是通过使用适当的 mount 选项(通常是:mode=0620,gid=)
将 devpts 文件系统挂载到 /dev/pts 目录即可。
0 = /dev/pts/0 第1个 Unix98 PTY slave
1 = /dev/pts/1 第2个 Unix98 PTY slave
…
153 block Enhanced Metadisk RAID (EMD) 存储单元(分区处理方式与 SCSI 磁盘相同)
0 = /dev/emd/0 第1个存储单元
1 = /dev/emd/0p1 第1个存储单元的第1个分区
2 = /dev/emd/0p2 第1个存储单元的第2个分区
…
15 = /dev/emd/0p15 第1个存储单元的第15个分区
16 = /dev/emd/1 第2个存储单元
32 = /dev/emd/2 第3个存储单元
…
240 = /dev/emd/15 第16个存储单元
180 char USB 字符设备
96 = /dev/u/hiddev0 第1个USB人机界面设备(鼠标/键盘/游戏杆/手写版等人操作计算机的设备)
…
111 = /dev/u/hiddev15 第16个USB人机界面设备
180 block USB 块设备(U盘之类)
0 = /dev/uba 第1个USB 块设备
8 = /dev/ubb 第2个USB 块设备
16 = /dev/ubc 第3个USB 块设备
…
192 char 内核 profiling 接口
0 = /dev/profile Profiling 控制设备
1 = /dev/profile0 CPU 0 的 Profiling 设备
2 = /dev/profile1 CPU 1 的 Profiling 设备
…
193 char 内核事件跟踪接口
0 = /dev/trace 跟踪控制设备
1 = /dev/trace0 CPU 0 的跟踪设备
2 = /dev/trace1 CPU 1 的跟踪设备
…
195 char Nvidia 图形设备(比如显卡)
0 = /dev/nvidia0 第1个 Nvidia 卡
1 = /dev/nvidia1 第2个 Nvidia 卡
…
255 = /dev/nvidiactl Nvidia 卡控制设备
202 char 特定于CPU模式的寄存器(model-specific register,MSR)
0 = /dev/cpu/0/msr CPU 0 的 MSRs
1 = /dev/cpu/1/msr CPU 1 的 MSRs
…
203 char CPU CPUID 信息
0 = /dev/cpu/0/cpuid CPU 0 的 CPUID
1 = /dev/cpu/1/cpuid CPU 1 的 CPUID
…
===================================================================
这部分详细说明一些应该或可能存在于 /dev 目录之外的文件。
链接更好使用与这里完全相同的格式(绝对路径或相对路径)。
究竟是使用硬链接(hard)还是软连接(symbolic)取决于不同的设备。
必须的链接
必须在所有的系统上都存在这些连接:
链接 目标 链接类型 简要说明
/dev/fd /proc/self/fd symbolic 文件描述府
/dev/stdin fd/0 symbolic 标准输入文件描述府
/dev/stdout fd/1 symbolic 标准输出文件描述符
/dev/stderr fd/2 symbolic 标准错误文件描述符
/dev/nfsd socksys symbolic 仅为 iBCS-2 所必须
/dev/X0R null symbolic 仅为 iBCS-2 所必须
/dev/X0R 是 —
推荐的链接
推荐在所有的系统上都存在这些连接:
链接 目标 链接类型 简要说明
/dev/core /proc/kcore symbolic 为了向后兼容
/dev/ramdisk ram0 symbolic 为了向后兼容
/dev/ftape qft0 symbolic 为了向后兼容
/dev/bttv0 video0 symbolic 为了向后兼容
/dev/radio radio0 symbolic 为了向后兼容
/dev/i2o* /dev/i2o/* symbolic 为了向后兼容
/dev/scd? sr? hard 代替 SCSI CD-ROM 的名字
本地定义的链接
下面的链接很可能需要根据机器的实际硬件配置创建其中的一部分甚至全部。
这些链接仅仅是为了迎合习惯用法,它们既非必须也非推荐。
链接 目标 链接类型 简要说明
/dev/mouse mouse port symbolic 当前鼠标
/dev/tape tape device symbolic 当前磁带
/dev/cdrom CD-ROM device symbolic 当前CD-ROM
/dev/cdwriter CD-writer symbolic 当前CD-writer
/dev/scanner scanner symbolic 当前扫描仪
/dev/modem modem port symbolic 当前调制解调器
/dev/root root device symbolic 当前根文件系统所在设备
/dev/swap swap device symbolic 当前swap所在设备
/dev/modem 不应当用于能够同时支持呼入和呼出的modem,因为往往会导致锁文件问题。
如果存在 /dev/modem ,那么它应当指向一个恰当的主 TTY 设备。
对于SCSI设备,
/dev/tape 和 /dev/cdrom 应该分别指向”cooked”设备 /dev/st* 和 /dev/sr* ;
而 /dev/cdwriter 和 /dev/scanner 应当分别指向恰当的 /dev/sg* 。
/dev/mouse 可以指向一个主串行 TTY 设备、一个硬件鼠标、
或者一个对应鼠标驱动程序的套接字(例如 /dev/gpmdata)。
套接字和管道
持久套接字和命名管道可以存在于 /dev 中。常见的有:
/dev/printer socket lpd 本地套接字
/dev/log socket syslog 本地套接字
/dev/gpmdata socket gpm 鼠标多路复用器(multiplexer)
/dev/gpmctl socket (LFS-LiveCD中出现)
/dev/initctl fifo pipe init 监听它并从中获取信息(用户与 init 进程交互的通道)
挂载点
以下名称被保留用于挂载特殊的文件系统。
这些特殊的文件系统只提供内核界面而不提供标准的设备节点。
/dev/pts devpts PTY slave 文件系统
/dev/shm tmpfs 提供对 POSIX 共享内存的直接访问
===================================================================
终端(或TTY)设备是一种特殊的字符设备。终端设备是可以在会话中扮演控制终端角色的任何设备,
包括:虚拟控制台、串行接口(已废弃)、伪终端(PTY)。
所有的终端设备共享一个通用的功能:line discipline,
它既包含通用的终端 line discipline 也包含SLIP和PPP模式。
所有的终端设备的命名都很相似。这部分内容将解释命名规则和各种类型的TTY(终端)的使用。
需要注意的是这些命名习惯包含了几个历史遗留包袱。
其中的一些是Linux所特有的,另一些则是继承自其他系统,
还有一些反映了Linux在成长过程中抛弃了原来借用自其它系统的一些习惯。
井号(#)在设备名里表示一个无前导零的十进制数。
虚拟控制台(Virtual console)和控制台设备(console device)
虚拟控制台是在系统视频监视器上全屏显示的终端。
虚拟控制台被命名为编号从 /dev/tty1 开始的 /dev/tty# 。
/dev/tty0 是当前虚拟控制台。
/dev/tty0 用于在不能使用帧缓冲设备(/dev/fb*)的机器上存取系统视频卡,
注意,不要将 /dev/console 用于此目的。
/dev/console 由内核管理,系统消息将被发送到这里。
单用户模式下必须允许 login 使用 /dev/console 。
串行接口(已废弃)
这里所说的”串行接口”是指 RS-232 串行接口和任何模拟这种接口的设备,
不管是在硬件(例如调制解调器)还是在软件(例如ISDN驱动)中模拟。
在linux中的每一个串行接口都有两个设备名:
主设备或呼入(callin)设备、交替设备或呼出(callout)设备。
设备类型之间使用字母的大小写进行区分。
比如,对于任意字母X,”tty”设备名为 /dev/ttyX# ,而”cu”设备名则为 /dev/cux# 。
由于历史原因,/dev/ttyS# 和 /dev/ttyC# 分别等价于 /dev/cua# 和 /dev/cub# 。
名称 /dev/ttyQ# 和 /dev/cuq# 被保留为本地使用。
伪终端(PTY)
伪终端用于创建登陆会话或提供其它功能,
比如通过 TTY line discipline (包括SLIP或者PPP功能)来处理任意的数据生成。
每一个 PTY 都有一个master端和一个slave端。按照 System V/Unix98 的 PTY 命名方案,
所有master端共享同一个 /dev/ptmx 设备节点(打开它内核将自动给出一个未分配的PTY),
所有slave端都位于 /dev/pts 目录下,名为 /dev/pts/# (内核会根据需要自动生成和删除它们)。
一旦master端被打开,相应的slave设备就可以按照与 TTY 设备完全相同的方式使用。
master设备与slave设备之间通过内核进行连接,等价于拥有 TTY 功能的双向管道(pipe)。
===============================
你可能会很奇怪,为什么没有 /dev/hda 这样的设备,难道不常用么?
linux tap设备 诊断的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于linux tap设备 诊断,Linux Tap设备诊断:快速确定问题原因,如何选择一个 Linux Tracer,在linux中是不是能看到设备节点就说明设备可以被访问了解决思路的信息别忘了在本站进行查找喔。
创新互联服务器托管拥有成都T3+级标准机房资源,具备完善的安防设施、三线及BGP网络接入带宽达10T,机柜接入千兆交换机,能够有效保证服务器托管业务安全、可靠、稳定、高效运行;创新互联专注于成都服务器托管租用十余年,得到成都等地区行业客户的一致认可。
网站题目:LinuxTap设备诊断:快速确定问题原因(linuxtap设备诊断)
链接地址:http://www.csdahua.cn/qtweb/news11/383111.html
网站建设、网络推广公司-快上网,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网