2016-09-17 分类: 网站建设
想必在做SEO的时候有同学发现相同的网站有两个页面但是排名的名次不同,既然是同一个网站那么应该权重都一样怎么会一个排名前面一个后面呢?在搜索引擎当中每个网页都有对应的页面得分在决定这两个页面排名顺序是运用到了TF-IDF算法跟PageRank链接算法,今天给大家分享关于SEO算法的文章。
链接分析排序的思想起源于文献引文索引机制,即谁的论文被引用次数多、引用它的论文的质量高,谁就被认为是权威,论文就是好论文。这个思路移植到网上就是谁的网页被链接次数多、链接它的网页质量高,那个网页就被认为是质量高、人气旺,是用户所需要的。链接分析算法大体可以分为3类,基于随机漫游模型的,比如pagerank,Repution算法;基于Hub和Authority相互增强模型的,如HITS及其变种;基于概率模型的,如SALSA;百度的超链分析和谷歌的PageRank都属于链接分析排序技术。在两者搜索引擎之间,算法都是有异曲同工之妙之处,本文重点讲解分析PageRank算法。
什么是PageRank算法
PageRank,网页排名,又称网页级别、Google左侧排名或佩奇排名,是一种由[1]根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google公司创办人拉里·佩奇(LarryPage)之姓来命名。Google用它来体现网页的相关性和重要性,在搜索引擎优化操作中是经常被用来评估网页优化的成效因素之一。Google的创始人拉里·佩奇和谢尔盖·布林于1998年在斯坦福大学发明了这项技术。
PageRank通过网络浩瀚的超链接关系来确定一个页面的等级。Google把从A页面到B页面的链接解释为A页面给B页面投票,Google根据投票来源(甚至来源的来源,即链接到A页面的页面)和投票目标的等级来决定新的等级。简单的说,一个高等级的页面可以使其他低等级页面的等级提升。
PageRank算法原理公式
PageRank利用了互联网独特的民主特性及其巨大的链接结构。实质上,当从网页A链接到网页B时,PageRank就认为“网页A投了网页B一票”。可根据网页的得票数评定其重要性。然而,除了考虑网 页得票数(即链接)的纯数量之外,还要分析为其投票的网页。“重要”网页所投之票自然份量较重,有助于增强其他网页的“重要性”。这样,重要的、高质量的网页可获得较高的网页级别,从而在搜索结果中可获较高的排位,假设一个由4个页面组成的小团体:A,B,C和D。如果所有页面都链向A,那么A的PR(PageRank)值将是B,C及D的Pagerank总和。
继续假设B也有链接到C,并且D也有链接到包括A的3个页面。一个页面不能投票2次。所以B给每个页面半票。以同样的逻辑,D投出的票只有三分之一算到了A的PageRank上。
换句话说,根据链出总数平分一个页面的PR值。
最后,所有这些被换算为一个百分比再乘上一个系数。由于“没有向外链接的页面”传递出去的PageRank会是0,所以,Google通过数学系统给了每个页面一个最小值:
说明:在SergeyBrin和LawrencePage的1998年原文中给每一个页面设定的最小值是1-d,而不是这里的(1-d)/N。所以一个页面的PageRank是由其他页面的PageRank计算得到。Google不断的重复计算每个页面的PageRank。如果给每个页面一个随机PageRank值(非0),那么经过不断的重复计算,这些页面的PR值会趋向于稳定,也就是收敛的状态。这就是搜索引擎使用它的原因。
简单说来,搜索引擎通过下述几个步骤来实现网页在其搜索结果页中的排名:
1、找到所有与搜索关键词匹配的网页。
2、根据页面因素如标题,关键词密度等排列等级。
3、计算导人链接的锚文本中的关键词。
4、通过PageRank得分调整网站排名结果。
事实上,真正的网站排名过程并不是这么简单,据百度等搜索引擎介绍,搜索引擎除了用PageRank算法衡量网页的重要程度以外,还有其它上百种因素来参与排序。其它搜索引擎也是如此,不可能只按照某一种规则来进行搜索结果的排序。要想做好SEO排名,了解算法原理本身,通过从本质出发,搜索引擎结果排序其实会越做越简单。
文章名称:SEO算法:如何通过PageRank算法判断SEO排序结果
分享URL:https://www.cdcxhl.com/news2/44902.html
成都网站建设公司_创新互联,为您提供网站导航、网站设计公司、网站收录、品牌网站建设、Google、定制网站
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联
猜你还喜欢下面的内容