2021-02-23 分类: 网站建设
如今,当组织需要从数据中获得一些见解时,他们首先倾向于寻找数据科学家的帮助。但这真的是一个更好的选择吗?人们需要了解数据科学家和数据分析师的角色有何不同,以及为什么希望聘用数据分析师。
聘用数据科学家还是数据分析师
那么,数据科学家和数据分析师之间的区别是什么?这些角色的定义可能有所不同,但通常认为数据科学家结合了三个关键学科的知识——数据分析、统计、机器学习。机器学习涉及到数据分析的过程,以学习和生成分析模型,这些模型可以对看不见的数据执行智能操作,并且人为干预最少。有了这样的期望,很明显具有这三方面技能的数据科学家也越来越受到企业的青睐。
但是,数据科学家在这三个方面的表现都是好的吗?更重要的是,所有这些角色都需要类似的技能吗?或者说数据分析师和机器学习工程师使用的技能和方法是完全不同的吗?
事实上,这些专家的方法确实有很大不同。谷歌公司首席决策科学家Cassie Kozyrkov对这种差异提供了一个精辟的解释。她声称,组织的数据分析师是为了提供快速的结果,例如分析数据中有趣的相关性。
为了满足决策者对快速和简短答案的期望,数据分析师使用相应的编码风格——使用更少的代码行,并为管理者生成易于理解的相关矩阵。机器学习工程师有一个完全不同的编码风格,他们的目标是建立一个好的模型,这通常需要很多时间。
统计学家也无法提供快速结果,他们会说,“等等,我们无法从这些数据中得出任何因果关系。我们甚至不知道其结果是否具有统计意义!”是的,有时组织需要擅长统计数据的统计学家或数据科学家来回答这类问题。但是真的需要知道这些答案才能了解数据中的相关性吗?
实际上没有。在获得数据分析师的初步结果后,组织应聘请领域专家,他们可以决定哪些已识别的模式对业务确实很重要,值得进一步调查。人们可能已经看到数据分析师在某些情况下比数据科学家更令人满意。但现在需要澄清数据分析师应该具备哪些技能来满足决策者的需求,并成为组织的资产。
组织真正需要什么样的数据分析师?
数据分析师在组织中的主要作用是通过识别数据中有趣且重要的模式,并提供隐藏在大量表格、图表和日志文件中的快速答案来帮助决策者。简而言之,如果领域专家发现这些领域很重要,数据分析师会确定统计人员和机器学习工程师需要注意的领域。
因此,人们希望在数据分析师中看到以下品质:
例如,他们可以说:“我们在Facebook上推出一个广告活动后,我们似乎获得了更多的潜在客户。这可能是关于此活动有效性的信号,但潜在客户数量的增长也可能是由季节性变化引起的。需要进行更深入的分析。”
因此,人们期望数据分析师熟悉Python编程语言,并熟练使用Tableau或Microsoft Power BI等工具。
网上有一些很好的课程可以培训这些技能。此外,数据分析师应该熟悉为数据分析创建的流行的数据包,并使用这些数据包以最有效的方式分析数据。
既然人们知道什么样的数据分析师可以成为组织的宝贵资产,那么总结一下人们对优秀数据分析师的期望,以及为什么每个组织都需要这样的专家。
每个公司都需要数据分析师
如果组织的管理者做出数据驱动的决策,那么该组织肯定需要数据分析师。组织希望招募具有上述技能的优秀专家,他们可以:
总而言之,优秀的数据分析师是决策者的主要助手,他们将数据转化为有意义的故事,快速回答疑难问题,并推动组织业务朝着正确的方向发展。
新闻标题:为什么每个组织都需要数据分析师
链接地址:https://www.cdcxhl.com/news11/102561.html
成都网站建设公司_创新互联,为您提供网站营销、网站内链、网站策划、移动网站建设、App开发、网站维护
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联
猜你还喜欢下面的内容