使用python怎么比较2张图片的相似度?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
成都创新互联提供高防主机、云服务器、香港服务器、托管服务器等具体如下:
#!/usr/bin/python # -*- coding: UTF-8 -*- import cv2 import numpy as np #均值哈希算法 def aHash(img): #缩放为8*8 img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC) #转换为灰度图 gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #s为像素和初值为0,hash_str为hash值初值为'' s=0 hash_str='' #遍历累加求像素和 for i in range(8): for j in range(8): s=s+gray[i,j] #求平均灰度 avg=s/64 #灰度大于平均值为1相反为0生成图片的hash值 for i in range(8): for j in range(8): if gray[i,j]>avg: hash_str=hash_str+'1' else: hash_str=hash_str+'0' return hash_str #差值感知算法 def dHash(img): #缩放8*8 img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC) #转换灰度图 gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) hash_str='' #每行前一个像素大于后一个像素为1,相反为0,生成哈希 for i in range(8): for j in range(8): if gray[i,j]>gray[i,j+1]: hash_str=hash_str+'1' else: hash_str=hash_str+'0' return hash_str #Hash值对比 def cmpHash(hash2,hash3): n=0 #hash长度不同则返回-1代表传参出错 if len(hash2)!=len(hash3): return -1 #遍历判断 for i in range(len(hash2)): #不相等则n计数+1,n最终为相似度 if hash2[i]!=hash3[i]: n=n+1 return n img1=cv2.imread('A.png') img2=cv2.imread('B.png') hash2= aHash(img1) hash3= aHash(img2) print(hash2) print(hash3) n=cmpHash(hash2,hash3) print '均值哈希算法相似度:'+ str(n) hash2= dHash(img1) hash3= dHash(img2) print(hash2) print(hash3) n=cmpHash(hash2,hash3) print '差值哈希算法相似度:'+ str(n)
讲解
相似图像搜索的哈希算法有三种:
均值哈希算法
差值哈希算法
感知哈希算法
均值哈希算法
步骤
缩放:图片缩放为8*8,保留结构,出去细节。
灰度化:转换为256阶灰度图。
求平均值:计算灰度图所有像素的平均值。
比较:像素值大于平均值记作1,相反记作0,总共64位。
生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。顺序不固定。但是比较时候必须是相同的顺序。
对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。
代码实现:
#均值哈希算法 def aHash(img): #缩放为8*8 img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC) #转换为灰度图 gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #s为像素和初值为0,hash_str为hash值初值为'' s=0 hash_str='' #遍历累加求像素和 for i in range(8): for j in range(8): s=s+gray[i,j] #求平均灰度 avg=s/64 #灰度大于平均值为1相反为0生成图片的hash值 for i in range(8): for j in range(8): if gray[i,j]>avg: hash_str=hash_str+'1' else: hash_str=hash_str+'0' return hash_str
差值哈希算法
差值哈希算法前期和后期基本相同,只有中间比较hash有变化。
步骤
1. 缩放:图片缩放为8*9,保留结构,出去细节。
2. 灰度化:转换为256阶灰度图。
3. 求平均值:计算灰度图所有像素的平均值。
4. 比较:像素值大于后一个像素值记作1,相反记作0。本行不与下一行对比,每行9个像素,八个差值,有8行,总共64位
5. 生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。顺序不固定。但是比较时候必须是相同的顺序。
6. 对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。
#差值感知算法 def dHash(img): #缩放8*8 img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC) #转换灰度图 gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) hash_str='' #每行前一个像素大于后一个像素为1,相反为0,生成哈希 for i in range(8): for j in range(8): if gray[i,j]>gray[i,j+1]: hash_str=hash_str+'1' else: hash_str=hash_str+'0' return hash_str
感知哈希算法
感知哈希算法可以参考
相似性︱python+opencv实现pHash算法+hamming距离(simhash)(三)
讲的很详细了。
Hash值对比
由于返回值为str字符串,所以直接遍历字符串进行比对。
#Hash值对比 def cmpHash(hash2,hash3): n=0 #hash长度不同则返回-1代表传参出错 if len(hash2)!=len(hash3): return -1 #遍历判断 for i in range(len(hash2)): #不相等则n计数+1,n最终为相似度 if hash2[i]!=hash3[i]: n=n+1 return n
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注创新互联成都网站设计公司行业资讯频道,感谢您对创新互联成都网站设计公司的支持。
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、网站设计器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
网页题目:使用python怎么比较2张图片的相似度-创新互联
网页网址:https://www.cdcxhl.com/article8/dpeeop.html
成都网站建设公司_创新互联,为您提供自适应网站、网站设计、服务器托管、网站建设、外贸建站、网站策划
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联