Filebeat从入门到实战-创新互联

文章目录
  • Filebeat的概念
    • 简介
    • Filebeat特点
    • Filebeat与Logstash对比
  • Filebeat安装
    • 安装地址
    • Logstash部署安装
  • Filebeat实战
    • 对接Logstash
    • Filebeat模块使用(配置Kafka)
    • 对接ES案例展示
    • 对接Kafka案例展示
  • 总结

创新互联建站专注为客户提供全方位的互联网综合服务,包含不限于做网站、网站建设、晋宁网络推广、重庆小程序开发、晋宁网络营销、晋宁企业策划、晋宁品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们大的嘉奖;创新互联建站为所有大学生创业者提供晋宁建站搭建服务,24小时服务热线:18982081108,官方网址:www.cdcxhl.comFilebeat的概念 简介

Filebeat是一种轻量型日志采集器,内置有多种模块(auditd、Apache、NGINX、System、MySQL 等等),可针对常见格式的日志大大简化收集、解析和可视化过程,只需一条命令即可。之所以能实现这一点,是因为它将自动默认路径(因操作系统而异)与 Elasticsearch 采集节点管道的定义和 Kibana 仪表板组合在一起。不仅如此,数个 Filebeat 模块还包括预配置的 Machine Learning 任务。另一点需要声明的是:根据采集的数据形式不同,形成了由多个模块组成的Beats。Beats是开源数据传输程序集,可以将其作为代理安装在服务器上,将操作数据发送给Elasticsearch,或者通过Logstash,在Kibana中可视化数据之前,在Logstash中进一步处理和增强数据。
Beats组成模块如下:

日志格式采集所需组件框架
Audit dataAuditbeat(轻量型审计日志采集器)
Log filesFilebeat(轻量型日志采集器)
AvailabilityHeartbeat(轻量型运行时间监控采集器)
MetricsMetricbeat(轻量型指标采集器)
Network trafficPacketbeat(轻量型网络数据采集器)
Windows event logsWinlogbeat(轻量型 Windows 事件日志采集器)

Beat日志采集流程图:

在这里插入图片描述

Filebeat特点

1)轻量型日志采集器,占用资源更少,对机器配置要求极低。
2)操作简便,可将采集到的日志信息直接发送到ES集群、Logstash、Kafka集群等消息队列中。
3)异常中断重启后会继续上次停止的位置。(通过${filebeat_home}\data\registry文件来记录日志的偏移量)。
4)使用压力敏感协议(backpressure-sensitive)来传输数据,在logstash 忙的时候,Filebeat 会减慢读取-传输速度,一旦 logstash 恢复,则 Filebeat 恢复原来的速度。
5)Filebeat带有内部模块(auditd,Apache,Nginx,System和MySQL),可通过一个指定命令来简化通用日志格式的收集,解析和可视化。

bin/logstash -e 'input { stdin{} } output { stdout{} }'
Filebeat与Logstash对比

1)Filebeat是轻量级数据托运者,您可以在服务器上将其作为代理安装,以将特定类型的操作数据发送到Elasticsearch。与Logstash相比,其占用空间小,使用的系统资源更少。
2)Logstash具有更大的占用空间,但提供了大量的输入,过滤和输出插件,用于收集,丰富和转换来自各种来源的数据。
3)Logstash是使用Java编写,插件是使用jruby编写,对机器的资源要求会比较高。在采集日志方面,对CPU、内存上都要比Filebeat高很多。

Filebeat安装

Filebeat本身对机器性能要求不高,所以对机器性能无需过多关注。加之,其采集数据后采用的Http请求发送的数据,所以对运行环境也无过多要求,因此在部署Filebeat时,应过多的关注其它组件的部署问题。

安装地址

1)Filebeat官网地址:https://www.elastic.co/cn/products/beats/filebeat
2)安装包下载地址:https://www.elastic.co/cn/downloads/beats/filebeat

在这里插入图片描述

笔者这里用的是8.5.2版本,包括ES,Kibana,Logstash框架等。一律使用的均是8.5.2版本

在这里笔者为了节省主节点资源,不将组件放到主节点了,放到次节点上

[root@hadoop103 ~]# cd /opt/software/
[root@hadoop103 software]# mkdir elk
[root@hadoop103 software]# cd elk/

#将组件放入该目录中

在这里插入图片描述

[root@hadoop103 elk]# tar -zxvf filebeat-8.5.2-linux-x86_64.tar.gz -C /opt/module/

[root@hadoop103 elk]# cd /opt/module/

[root@hadoop103 module]# mv filebeat-8.5.2-linux-x86_64/ filebeat

进入filebeat,指定监控日志的输入输出路径

[root@hadoop103 module]# mkdir log
[root@hadoop103 module]# cd filebeat/
[root@hadoop103 filebeat]# vim filebeat.yml

对图片内容进行修改

在这里插入图片描述

Logstash部署安装
[root@hadoop103 elk]# tar -zxvf logstash-8.5.2-linux-x86_64.tar.gz -C /opt/module/

[root@hadoop103 module]# mv logstash-8.5.2/ logstash

注意:logstash在使用的时候单独配置运行文件。

Filebeat实战 对接Logstash

1)创建文件夹加job编写数据采集文件:filebeat_to_logstash.conf文件

[root@hadoop103 logstash]$ mkdir job
[root@hadoop103 logstash]$ cd job/
[root@hadoop103 job]$ vim filebeat_to_logstash.conf

# 添加内容如下
input {#对接的是beats
  beats {#端口号5044
    port=>5044
    #编码格式GBK
    codec=>plain{charset=>"GBK"
    }
  }
}
filter {mutate{split=>["message","|"]
                add_field =>{"field1" =>"%{[message][0]}"
                }
                add_field =>{"field2" =>"%{[message][1]}"
                }
                remove_field =>["message"]
        }
        json{source =>"field1"
                target =>"field2"
        }
}
#输出数据到控制台
output{   stdout{   codec=>rubydebug
      }
}

配置filebeat中的output部分(Logstash)

[root@hadoop103 filebeat]# vim filebeat.yml

在这里插入图片描述

启动filebeat 与 logstash

[root@hadoop103 filebeat]$ ./filebeat -e
[root@hadoop103 logstash]$ bin/logstash -f job/filebeat_to_logstash.conf

进入log目录,创建日志文件,并导入如下数据:

[root@hadoop103 logstash]$ cd /opt/module/log
[root@hadoop103 log]$ vim app.log
1562065564549|{"cm":{"ln":"-54.7","sv":"V2.9.8","os":"8.1.0","g":"9NY0AL0L@gmail.com","mid":"m140","nw":"WIFI","l":"pt","vc":"13","hw":"1080*1920","ar":"MX","uid":"u737","t":"1562030978430","la":"-7.4","md":"HTC-14","vn":"1.1.3","ba":"HTC","sr":"M"},"ap":"gmall","et":[{"ett":"1561996979060","en":"display","kv":{"newsid":"n925","action":"1","extend1":"1","place":"4","category":"37"}},{"ett":"1562031053551","en":"newsdetail","kv":{"entry":"3","newsid":"n332","news_staytime":"10","loading_time":"8","action":"4","showtype":"3","category":"11","type1":"433"}},{"ett":"1561986545246","en":"loading","kv":{"extend2":"","loading_time":"7","action":"1","extend1":"","type":"1","type1":"102","loading_way":"1"}},{"ett":"1562053433842","en":"active_foreground","kv":{"access":"1","push_id":"1"}},{"ett":"1562030443443","en":"favorites","kv":{"course_id":2,"id":0,"add_time":"1562049124751","userid":0}}]}

查看结果

Logstash控制台结果如下:

在这里插入图片描述

Filebeat模块使用(配置Kafka)

1)官方提供了封装完整的框架日志监控,拿kafka为例,使用对应的module可以直接实现对kafka日志的监控

2)修改Filebeat配置文件filebeat.yml

[root@hadoop103 filebeat]$ vim filebeat.yml

按照图片方式设置好

在这里插入图片描述
进入modules.d 目录

[root@hadoop103 filebeat]$ cd modules.d

后缀disabled均为不可用状态。

在这里插入图片描述

3)修改kafka对应的module配置文件

[root@hadoop103 modules.d]# cp kafka.yml.disabled kafka.yml
[root@hadoop103 modules.d]# vim kafka.yml

https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-module-kafka.html

在这里插入图片描述

配置文件直接从官方文档获取即可。

注意,官网的path/to是kafka的路径,具体路径要看自己的服务器上kafka的路径。记得修改!

在这里插入图片描述

对接ES案例展示

安装ES:https://blog.csdn.net/weixin_45417821/article/details/117389204

这里安装单机版ES即可,只为测试专用

chown -R luanhao:luanhao /opt/module/es

除了单机配置之外,还需要再加入一个配置文件

ingest.geoip.downloader.enabled: false

#并将xpack.security.enabled设置为false,原因:是因为ES8默认开启了 ssl 认证。
xpack.security.enabled: false

官网:https://www.elastic.co/guide/en/beats/filebeat/current/elasticsearch-output.html

在这里插入图片描述

1)修改Filebeat配置文件

output.elasticsearch:
  # Array of hosts to connect to.
  hosts: ["hadoop103:9200"]
  #通过判断数据中包含的字符串 可以分流数据
  #  #通过语法%{}可以调用元数据信息和特殊信息
  #  #error-8.5.2-2022-12-02
  indices:
    - index: "warning"
      when.contains:
        message: "WARN"
    - index: "error-%{[agent.version]}-%{+yyyy.MM.dd}"
      when.contains:
        message: "ERR"
    - index: "info"
      when.contains:
        message: "INFO"

清一色的error日志

在这里插入图片描述

对接Kafka案例展示

Filebeat也可以直接将数据发送到Kafka

官网相关文档如下:https://www.elastic.co/guide/en/beats/filebeat/current/kafka-output.html

在这里插入图片描述

1)修改Filebeat配置文件

[root@hadoop103 filebeat]$ vim filebeat.yml

添加如下内容

在这里插入图片描述
简单些就行

启动zk和kafka,安装目录:https://blog.csdn.net/weixin_45417821/article/details/

[root@hadoop104 ~]# kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic logs

之后拷贝一份log文件进去即可

[root@hadoop103 log]# cd /opt/module/log
[root@hadoop103 log]# cp app.log appbak.log

查看kafka消费者内容

在这里插入图片描述

总结

对于大数据从业者人员来讲,我们只需要关注,日志文件 ->Filebeat ->Kafka 这样的工程,其他的均可交给Spark ,Flink等计算框架计算即可。

你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧

新闻标题:Filebeat从入门到实战-创新互联
文章分享:https://www.cdcxhl.com/article8/deigop.html

成都网站建设公司_创新互联,为您提供定制网站网站设计公司品牌网站制作建站公司网站制作网站策划

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

成都定制网站建设