本篇内容主要讲解“Hadoop压缩技术的概念”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Hadoop压缩技术的概念”吧!
甘南网站制作公司哪家好,找创新互联公司!从网页设计、网站建设、微信开发、APP开发、成都响应式网站建设公司等网站项目制作,到程序开发,运营维护。创新互联公司成立于2013年到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联公司。压缩策略和原则
压缩格式 | hadoop自带 | 算法 | 文件扩展名 | 是否可切分 | 换成压缩格式后,原程序是否需要修改 |
---|---|---|---|---|---|
DEFLATE | 是,直接使用 | DEFLATE | .deflate | 否 | 和文本处理一样,不需要修改 |
Gzip | 是,直接使用 | DEFLATE | .gz | 否 | 和文本处理一样,不需要修改 |
bzip2 | 是,直接使用 | bzip2 | .bz2 | 是 | 和文本处理一样,不需要修改 |
LZO | 否,需要安装 | LZO | .lzo | 是 | 需要建索引,还需要指定输入格式 |
Snappy | 否,需要安装 | Snappy | .snappy | 否 | 和文本处理一样,不需要修改 |
为了支持多种压缩/解压缩算法,Hadoop 引入了编码/解码器,如下表所示。
压缩格式 | 对应的编码/解码器 |
---|---|
DEFLATE | org.apache.hadoop.io.compress.DefaultCodec |
gzip | org.apache.hadoop.io.compress.GzipCodec |
bzip2 | org.apache.hadoop.io.compress.BZip2Codec |
LZO | com.hadoop.compression.lzo.LzopCodec |
Snappy | org.apache.hadoop.io.compress.SnappyCodec |
压缩性能的比较
压缩算法 | 原始文件大小 | 压缩文件大小 | 压缩速度 | 解压速度 |
---|---|---|---|---|
gzip | 8.3GB | 1.8GB | 17.5MB/s | 58MB/s |
bzip2 | 8.3GB | 1.1GB | 2.4MB/s | 9.5MB/s |
LZO | 8.3GB | 2.9GB | 49.3MB/s | 74.6MB/s |
参数 | 默认值 | 阶段 |
---|---|---|
io.compression.codecs [在core-site.xml] | org.apache.hadoop.io.compress.DefaultCodecorg apache.hadoop.io.compress.GzipCodec org.apache.hadoop.io.compress.BZip2Codec | 输入压缩 |
mapreduce.map.output.compress [mapred-site.xml] | false | mapper输出 |
mapreduce.map.output.compress.codec [mapred-site.xml] | org.apache.hadoop.io.compress.DefaultCodec | mapper输出 |
mapreduce.output.fileoutputformat.compress [mapred-site.xml] | false | reducer输出 |
mapreduce.output.fileoutputformat.compress.codec [mapred-site.xml] | org.apache.hadoop.io.compress DefaultCodec | reducer输出 |
mapreduce.output.fileoutputformat.compress.type [mapred-site.xml] | RECORD | reducer输出 |
package com.djm.mapreduce.zip; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; import org.apache.hadoop.io.compress.CompressionCodec; import org.apache.hadoop.io.compress.CompressionCodecFactory; import org.apache.hadoop.io.compress.CompressionInputStream; import org.apache.hadoop.io.compress.CompressionOutputStream; import org.apache.hadoop.util.ReflectionUtils; import java.io.*; public class CompressUtils { public static void main(String[] args) throws IOException, ClassNotFoundException { compress(args[0], args[1]); decompress(args[0]); } private static void decompress(String path) throws IOException { CompressionCodecFactory factory = new CompressionCodecFactory(new Configuration()); CompressionCodec codec = (CompressionCodec) factory.getCodec(new Path(path)); if (codec == null) { System.out.println("cannot find codec for file " + path); return; } CompressionInputStream cis = codec.createInputStream(new FileInputStream(new File(path))); FileOutputStream fos = new FileOutputStream(new File(path + ".decoded")); IOUtils.copyBytes(cis, fos, 1024); cis.close(); fos.close(); } private static void compress(String path, String method) throws IOException, ClassNotFoundException { FileInputStream fis = new FileInputStream(new File(path)); Class codecClass = Class.forName(method); CompressionCodec codec = (CompressionCodec) ReflectionUtils.newInstance(codecClass, new Configuration()); FileOutputStream fos = new FileOutputStream(new File(path + codec.getDefaultExtension())); CompressionOutputStream cos = codec.createOutputStream(fos); IOUtils.copyBytes(fis, cos, 1024); cos.close(); fos.close(); fis.close(); } }
package com.djm.mapreduce.wordcount; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.compress.BZip2Codec; import org.apache.hadoop.io.compress.CompressionCodec; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class WcDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration configuration = new Configuration(); configuration.setBoolean("mapreduce.map.output.compress", true); // 设置map端输出压缩方式 configuration.setClass("mapreduce.map.output.compress.codec", BZip2Codec.class, CompressionCodec.class); Job job = Job.getInstance(configuration); job.setJarByClass(WcDriver.class); job.setMapperClass(WcMapper.class); job.setReducerClass(WcReduce.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); boolean result = job.waitForCompletion(true); System.exit(result ? 0 : 1); } }
package com.djm.mapreduce.wordcount; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.compress.BZip2Codec; import org.apache.hadoop.io.compress.CompressionCodec; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class WcDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration); job.setJarByClass(WcDriver.class); job.setMapperClass(WcMapper.class); job.setReducerClass(WcReduce.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); // 设置reduce端输出压缩开启 FileOutputFormat.setCompressOutput(job, true); // 设置压缩的方式 FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class); boolean result = job.waitForCompletion(true); System.exit(result ? 0 : 1); } }
到此,相信大家对“Hadoop压缩技术的概念”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
新闻标题:Hadoop压缩技术的概念-创新互联
分享URL:https://www.cdcxhl.com/article8/deeiip.html
成都网站建设公司_创新互联,为您提供网站制作、外贸网站建设、网站改版、网站营销、ChatGPT、域名注册
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联