如何使用R语言解决可恶的脏数据-创新互联

在数据分析过程中最头疼的应该是如何应付脏数据,脏数据的存在将会对后期的建模、挖掘等工作造成严重的错误,所以必须谨慎的处理那些脏数据。

从策划到设计制作,每一步都追求做到细腻,制作可持续发展的企业网站。为客户提供成都做网站、网站制作、成都外贸网站建设、网站策划、网页设计、申请域名虚拟主机、网络营销、VI设计、 网站改版、漏洞修补等服务。为客户提供更好的一站式互联网解决方案,以客户的口碑塑造优易品牌,携手广大客户,共同发展进步。

脏数据的存在形式主要有如下几种情况:

1)缺失值

2)异常值

3)数据的不一致性

下面就跟大家侃侃如何处理这些脏数据。

一、缺失值

缺失值,顾名思义就是一种数据的遗漏,根据CRM中常见的缺失值做一个汇总:

1)会员信息缺失,如***号、手机号、性别、年龄等

2)消费数据缺失,如消费次数、消费金额、客单价,卡余等

3)产品信息缺失,如批次、价格、折扣、所属类别等

根据实际的业务需求不同,可以对缺失值采用不同的处理办法,如需要给会员推送短信,而某些会员恰好手机号不存在,可以考虑剔除;如性别不知道,可以使用众数替代;如年龄未知,可以考虑用均值替换。当然还有其他处理缺失值的办法,如多重插补法。下面以一个简单的例子,来说明缺失值的处理。

#模拟一批含缺失值的数据集

set.seed(1234)

Tel <- 13812341000:13812341999

Sex <- sample(c('F','M'), size = 1000, replace = T, prob = c(0.4,0.6))

Age <- round(runif(n = 1000, min = 18, max = 60))

Freq <- round(runif(n = 1000, min = 1, max = 368))

Amount <- rnorm(n = 1000, mean = 134, sd = 10)

ATV <- runif(n = 1000, min = 23, max = 138)

df <- data.frame(Tel = Tel, Sex = Sex, Age = Age, Freq = Freq, Amount = Amount, ATV = ATV)

上面的数据框是一个不含有任何缺失值的数据集,现在我想随机产生100个缺失值,具体操作如下:

#查看原始数据集的概要

summary(df)

如何使用R语言解决可恶的脏数据
#随机参数某行某列的下标

set.seed(1234)

i <- sample(1:6, size = 100, replace = T)

j <- sample(1:1000, size = 100)

#将下标组合成矩阵

index <- as.matrix(data.frame(j,i))

#将原始数据框转换为矩阵

df <- as.matrix(df)

#将随机参数的行列赋值为NA

df[index] <- NA

#重新将矩阵转换为数据框

df2 <- as.data.frame(df)

#变换变量类型

df2$Age <- as.integer(df2$Age)

df2$Freq <- as.integer(df2$Freq)

df2$Amount <- as.numeric(df2$Amount)

df2$ATV <- as.numeric(df2$ATV)

#再一次查看赋予缺失值后的数据框概要

summary(df2)

如何使用R语言解决可恶的脏数据

很明显这里已经随机产生100个缺失值了,下面看看这100个缺失值的分布情况。我们使用VIM包中的aggr()函数绘制缺失值的分布情况:

library(VIM)

aggr(df2, prop = FALSE, numbers = TRUE)

如何使用R语言解决可恶的脏数据
图中显示:Tel变量有21个缺失,Sex变量有28个缺失,Age变量有6个缺失,Freq变量有20个缺失,Amount变量有13个缺失,ATV有12个缺失。

为了演示,下面对Tel变量缺失的观测进行剔除;对Sex变量的缺失值用众数替换;Age变量用平均值替换;Freq变量、Amount变量和ATV变量用多重插补法填充。

#剔除Tel变量的缺失观测

df3 <- df2[is.na(df2$Tel)==FALSE,]

#分别用众数和均值替换性别和年龄

#性别的众数

Sex_mode <- names(which.max(table(df3$Sex)))

#年龄的均值

Age_mean <- mean(df3$Age, na.rm = TRUE)

library(tidyr)

df3 <- replace_na(df3,replace = list(Sex = Sex_mode, Age = Age_mean))

summary(df3)

如何使用R语言解决可恶的脏数据
这个时候,Tel变量、Sex变量和Age变量已不存在缺失值,下面对Freq变量、Amount变量和ATV变量使用多重插补法。

可通过mice包实现多重插补法,该包可以对数值型数据和因子型数据进行插补。对于数值型数据,默认使用随机回归添补法(pmm);对二元因子数据,默认使用Logistic回归添补法(logreg);对多元因子数据,默认使用分类回归添补法(polyreg)。其他插补法,可通过?mice查看相关文档。

library(mice)

#对缺失值部分,进行5次的多重插补,这里默认使用随机回归添补法(pmm)

imp <- mice(data = df3, m = 5)

#查看一下插补的结果

imp$imp

#计算5重插补值的均值

Freq_imp <- apply(imp$imp$Freq,1,mean)

Amount_imp <- apply(imp$imp$Amount,1,mean)

ATV_imp <- apply(imp$imp$ATV,1,mean)

#并用该均值替换原来的缺失值

df3$Freq[is.na(df3$Freq)] <- Freq_imp

df3$Amount[is.na(df3$Amount)] <- Amount_imp

df3$ATV[is.na(df3$ATV)] <- ATV_imp

#再次查看填补完缺失值后的数据集和原始数据集概况

summary(df3)

summary(df2)

如何使用R语言解决可恶的脏数据
通过不同的方法将缺失值数据进行处理,从上图可知,通过填补后,数据的概概览情况基本与原始数据相近,说明填补过程中,基本保持了数据的总体特征。

二、异常值

异常值也是非常痛恨的一类脏数据,异常值往往会拉高或拉低数据的整体情况,为克服异常值的影响,我们需要对异常值进行处理。首先,我们需要识别出哪些值是异常值或离群点,其次如何处理这些异常值。下面仍然以案例的形式,给大家讲讲异常值的处理:

1、识别异常值

一般通过绘制盒形图来查看哪些点是离群点,而离群点的判断标准是四分位数与四分位距为基础。即离群点超过上四分位数的1.5倍四分位距或低于下四分位数的1.5倍四分位距。

例子:

#随机产生一组数据

set.seed(1234)

value <- c(rnorm(100, mean = 10, sd = 3), runif(20, min = 0.01, max = 30), rf(30, df1 = 5, df2 = 20))

#绘制箱线图,并用红色的方块标注出异常值

library(ggplot2)

ggplot(data = NULL, mapping = aes(x = '', y = value)) + geom_boxplot(outlier.colour = 'red', outlier.shape = 15, width = 1.2)

如何使用R语言解决可恶的脏数据
图中可知,有一部分数据落在上四分位数的1.5倍四分位距之上,即异常值,下面通过编程,将异常值找出来:

#计算下四分位数、上四分位数和四分位距

QL <- quantile(value, probs = 0.25)

QU <- quantile(value, probs = 0.75)

QU_QL <- QU-QL

QL;QU;QU_QL

如何使用R语言解决可恶的脏数据

2、找出异常点

which(value > QU + 1.5*QU_QL)

value[which(value > QU + 1.5*QU_QL)]

如何使用R语言解决可恶的脏数据
结果显示,分别是第104、106、110、114、116、118和120这6个点。下面就要处理这些离群点,一般有两种方法,即剔除或替补。剔除很简单,但有时剔除也会给后面的分析带来错误的结果,接下来就讲讲替补。

#用离异常点最近的点替换

test01 <- value

out_imp01 <- max(test01[which(test01 <= QU + 1.5*QU_QL)])

test01[which(test01 > QU + 1.5*QU_QL)] <- out_imp01

#用上四分位数的1.5倍四分位距或下四分位数的1.5倍四分位距替换

test02 <- value

out_imp02 <- QU + 1.5*QU_QL

test02[which(test02 > QU + 1.5*QU_QL)] <- out_imp02

#对比替换前后的数据概览

summary(value)

summary(test01)

summary(test02)

如何使用R语言解决可恶的脏数据

三、数据的不一致性

数据的不一致性一般是由于不同的数据源导致,如有些数据源的数据单位是斤,而有些数据源的数据单位为公斤;如有些数据源的数据单位是米,而有些数据源的数据单位为厘米;如两个数据源的数据没有同时更新等。对于这种不一致性可以通过数据变换轻松得到一致的数据,只有数据源的数据一致了,才可以进行统计分析或数据挖掘。由于这类问题的处理比较简单,这里就不累述具体的处理办法了。

另外有需要云服务器可以了解下创新互联cdcxhl.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。

新闻名称:如何使用R语言解决可恶的脏数据-创新互联
URL分享:https://www.cdcxhl.com/article6/ihpog.html

成都网站建设公司_创新互联,为您提供品牌网站设计静态网站外贸建站面包屑导航建站公司做网站

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

成都定制网站建设