这期内容当中小编将会给大家带来有关怎么深入理解Java内存模型JMM,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
创新互联公司,专注为中小企业提供官网建设、营销型网站制作、响应式网站开发、展示型网站制作、成都网站建设等服务,帮助中小企业通过网站体现价值、有效益。帮助企业快速建站、解决网站建设与网站营销推广问题。Java 内存模型(JMM)是一种抽象的概念,并不真实存在,它描述了一组规则或规范,通过这组规范定义了程序中各个变量(包括实例字段、静态字段和构成数组对象的元素)的访问方式。试图屏蔽各种硬件和操作系统的内存访问差异,以实现让 Java 程序在各种平台下都能达到一致的内存访问效果。
注意JMM与JVM内存区域划分的区别:
JMM描述的是一组规则,围绕原子性、有序性和可见性展开;
相似点:存在共享区域和私有区域
处理器上的寄存器的读写的速度比内存快几个数量级,为了解决这种速度矛盾,在它们之间加入了高速缓存。
加入高速缓存带来了一个新的问题:缓存一致性。如果多个缓存共享同一块主内存区域,那么多个缓存的数据可能会不一致,需要一些协议来解决这个问题。
所有的变量都 存储在主内存中,每个线程还有自己的工作内存 ,工作内存存储在高速缓存或者寄存器中,保存了该线程使用的变量的主内存副本拷贝。
线程只能直接操作工作内存中的变量,不同线程之间的变量值传递需要通过主内存来完成。
方法中的基本类型本地变量将直接存储在工作内存的栈帧结构中;
引用类型的本地变量:引用存储在工作内存,实际存储在主内存;
成员变量、静态变量、类信息均会被存储在主内存中;
主内存共享的方式是线程各拷贝一份数据到工作内存中,操作完成后就刷新到主内存中。
Java 内存模型定义了 8 个操作来完成主内存和工作内存的交互操作。
read:把一个变量的值从主内存传输到工作内存中
load:在 read 之后执行,把 read 得到的值放入工作内存的变量副本中
use:把工作内存中一个变量的值传递给执行引擎
assign:把一个从执行引擎接收到的值赋给工作内存的变量
store:把工作内存的一个变量的值传送到主内存中
write:在 store 之后执行,把 store 得到的值放入主内存的变量中
lock:作用于主内存的变量
unlock
在单线程环境下不能改变程序的运行结果;
存在数据依赖关系的不允许重排序;
无法通过Happens-before原则推到出来的,才能进行指令的重排序。
Java 内存模型保证了 read、load、use、assign、store、write、lock 和 unlock 操作具有原子性,例如对一个 int 类型的变量执行 assign 赋值操作,这个操作就是原子性的。但是 Java 内存模型允许虚拟机将没有被 volatile 修饰的 64 位数据(long,double)的读写操作划分为两次 32 位的操作来进行,即 load、store、read 和 write 操作可以不具备原子性。
有一个错误认识就是,int 等原子性的类型在多线程环境中不会出现线程安全问题。前面的线程不安全示例代码中,cnt 属于 int 类型变量,1000 个线程对它进行自增操作之后,得到的值为 997 而不是 1000。
为了方便讨论,将内存间的交互操作简化为 3 个:load、assign、store。
下图演示了两个线程同时对 cnt 进行操作,load、assign、store 这一系列操作整体上看不具备原子性,那么在 T1 修改 cnt 并且还没有将修改后的值写入主内存,T2 依然可以读入旧值。可以看出,这两个线程虽然执行了两次自增运算,但是主内存中 cnt 的值最后为 1 而不是 2。因此对 int 类型读写操作满足原子性只是说明 load、assign、store 这些单个操作具备原子性。
AtomicInteger 能保证多个线程修改的原子性。
使用 AtomicInteger 重写之前线程不安全的代码之后得到以下线程安全实现:
public class AtomicExample { private AtomicInteger cnt = new AtomicInteger(); public void add() { cnt.incrementAndGet(); } public int get() { return cnt.get(); } }复制代码
public static void main(String[] args) throws InterruptedException { final int threadSize = 1000; AtomicExample example = new AtomicExample(); // 只修改这条语句 final CountDownLatch countDownLatch = new CountDownLatch(threadSize); ExecutorService executorService = Executors.newCachedThreadPool(); for (int i = 0; i < threadSize; i++) { executorService.execute(() -> { example.add(); countDownLatch.countDown(); }); } countDownLatch.await(); executorService.shutdown(); System.out.println(example.get()); }复制代码
1000复制代码
除了使用原子类之外,也可以使用 synchronized 互斥锁来保证操作的原子性。它对应的内存间交互操作为:lock 和 unlock,在虚拟机实现上对应的字节码指令为 monitorenter 和 monitorexit。
public class AtomicSynchronizedExample { private int cnt = 0; public synchronized void add() { cnt++; } public synchronized int get() { return cnt; } }复制代码
public static void main(String[] args) throws InterruptedException { final int threadSize = 1000; AtomicSynchronizedExample example = new AtomicSynchronizedExample(); final CountDownLatch countDownLatch = new CountDownLatch(threadSize); ExecutorService executorService = Executors.newCachedThreadPool(); for (int i = 0; i < threadSize; i++) { executorService.execute(() -> { example.add(); countDownLatch.countDown(); }); } countDownLatch.await(); executorService.shutdown(); System.out.println(example.get()); }复制代码
1000复制代码
可见性指当一个线程修改了共享变量的值,其它线程能够立即得知这个修改。Java 内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值来实现可见性的。JMM 内部的实现通常是依赖于所谓的 内存屏障 ,通过 禁止某些重排序 的方式,提供内存 可见性保证 ,也就是实现了 各种 happen-before 规则 。与此同时,更多复杂度在于,需要尽量确保各种编译器、各种体系结构的处理器,都能够提供一致的行为。
主要有有三种实现可见性的方式:
volatile,会 强制 将该变量自己和当时其他变量的状态都 刷出缓存 。
synchronized,对一个变量执行 unlock 操作之前,必须把变量值同步回主内存。
final,被 final 关键字修饰的字段在构造器中一旦初始化完成,并且没有发生 this 逃逸(其它线程通过 this 引用访问到初始化了一半的对象),那么其它线程就能看见 final 字段的值。
对前面的线程不安全示例中的 cnt 变量使用 volatile 修饰,不能解决线程不安全问题,因为 volatile 并不能保证操作的原子性。
有序性是指:在本线程内观察,所有操作都是有序的。在一个线程观察另一个线程,所有操作都是无序的,无序是因为发生了指令重排序。在 Java 内存模型中,允许编译器和处理器对指令进行重排序,重排序过程不会影响到单线程程序的执行,却会影响到多线程并发执行的正确性。
volatile 关键字通过添加内存屏障的方式来禁止指令重排,即重排序时不能把后面的指令放到内存屏障之前。
也可以通过 synchronized 来保证有序性,它保证每个时刻只有一个线程执行同步代码,相当于是让线程顺序执行同步代码。
JSR-133内存模型使用先行发生原则在Java内存模型中保证多线程操作 可见性 的机制,也是对早期语言规范中含糊的可见性概念的一个精确定义。上面提到了可以用 volatile 和 synchronized 来保证有序性。除此之外,JVM 还规定了先行发生原则,让一个操作 无需控制 就能先于另一个操作完成。
由于 指令重排序 的存在,两个操作之间有happen-before关系, 并不意味着前一个操作必须要在后一个操作之前执行。 仅仅要求前一个操作的执行结果对于后一个操作是可见的,并且前一个操作 按顺序排在第二个操作之前。
Single Thread rule
在一个线程内,在程序前面的操作先行发生于后面的操作。
Monitor Lock Rule
一个 unlock(解锁) 操作 先行发生于 后面对同一个锁的 lock(加锁) 操作。
Volatile Variable Rule
对一个 volatile 变量的 写操作 先行发生于后面对这个变量的 读操作 。
Thread Start Rule
Thread 对象的 start() 方法调用先行发生于此线程的每一个动作。
Thread Join Rule
Thread 对象的结束先行发生于 join() 方法返回。
Thread Interruption Rule
对线程 interrupt() 方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过 interrupted() 方法检测到是否有中断发生。
Finalizer Rule
一个对象的初始化完成(构造函数执行结束)先行发生于它的 finalize() 方法的开始。
Transitivity
如果操作 A 先行发生于操作 B,操作 B 先行发生于操作 C,那么操作 A 先行发生于操作 C。
上述就是小编为大家分享的怎么深入理解Java内存模型JMM了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注创新互联-成都网站建设公司行业资讯频道。
分享标题:怎么深入理解Java内存模型JMM-创新互联
标题链接:https://www.cdcxhl.com/article48/ehhhp.html
成都网站建设公司_创新互联,为您提供网站策划、网站导航、网站内链、品牌网站设计、虚拟主机、网站建设
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联