利用tensorflow怎么实现打印内存中的变量?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
成都创新互联公司专注于黎城企业网站建设,成都响应式网站建设公司,商城建设。黎城网站建设公司,为黎城等地区提供建站服务。全流程按需求定制网站,专业设计,全程项目跟踪,成都创新互联公司专业和态度为您提供的服务方法一:
循环打印
模板
for (x, y) in zip(tf.global_variables(), sess.run(tf.global_variables())): print '\n', x, y
实例
# coding=utf-8 import tensorflow as tf def func(in_put, layer_name, is_training=True): with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE): bn = tf.contrib.layers.batch_norm(inputs=in_put, decay=0.9, is_training=is_training, updates_collections=None) return bn def main(): with tf.Graph().as_default(): # input_x input_x = tf.placeholder(dtype=tf.float32, shape=[1, 4, 4, 1]) import numpy as np i_p = np.random.uniform(low=0, high=255, size=[1, 4, 4, 1]) # outputs output = func(input_x, 'my', is_training=True) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) t = sess.run(output, feed_dict={input_x:i_p}) # 法一: 循环打印 for (x, y) in zip(tf.global_variables(), sess.run(tf.global_variables())): print '\n', x, y if __name__ == "__main__": main()
2017-09-29 10:10:22.714213: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1052] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1) <tf.Variable 'my/BatchNorm/beta:0' shape=(1,) dtype=float32_ref> [ 0.] <tf.Variable 'my/BatchNorm/moving_mean:0' shape=(1,) dtype=float32_ref> [ 13.46412563] <tf.Variable 'my/BatchNorm/moving_variance:0' shape=(1,) dtype=float32_ref> [ 452.62246704] Process finished with exit code 0
方法二:
指定变量名打印
模板
print 'my/BatchNorm/beta:0', (sess.run('my/BatchNorm/beta:0'))
实例
# coding=utf-8 import tensorflow as tf def func(in_put, layer_name, is_training=True): with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE): bn = tf.contrib.layers.batch_norm(inputs=in_put, decay=0.9, is_training=is_training, updates_collections=None) return bn def main(): with tf.Graph().as_default(): # input_x input_x = tf.placeholder(dtype=tf.float32, shape=[1, 4, 4, 1]) import numpy as np i_p = np.random.uniform(low=0, high=255, size=[1, 4, 4, 1]) # outputs output = func(input_x, 'my', is_training=True) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) t = sess.run(output, feed_dict={input_x:i_p}) # 法二: 指定变量名打印 print 'my/BatchNorm/beta:0', (sess.run('my/BatchNorm/beta:0')) print 'my/BatchNorm/moving_mean:0', (sess.run('my/BatchNorm/moving_mean:0')) print 'my/BatchNorm/moving_variance:0', (sess.run('my/BatchNorm/moving_variance:0')) if __name__ == "__main__": main()
2017-09-29 10:12:41.374055: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1052] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1) my/BatchNorm/beta:0 [ 0.] my/BatchNorm/moving_mean:0 [ 8.08649635] my/BatchNorm/moving_variance:0 [ 368.03442383] Process finished with exit code 0
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注创新互联行业资讯频道,感谢您对创新互联的支持。
分享题目:利用tensorflow怎么实现打印内存中的变量-创新互联
文章源于:https://www.cdcxhl.com/article48/dhichp.html
成都网站建设公司_创新互联,为您提供App设计、用户体验、品牌网站制作、手机网站建设、小程序开发、网站排名
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联