这篇“Python之np.where()的代码怎么应用”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python之np.where()的代码怎么应用”文章吧。
在龙凤等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都做网站、成都网站制作、成都外贸网站建设 网站设计制作按需策划,公司网站建设,企业网站建设,成都品牌网站建设,成都全网营销推广,成都外贸网站建设公司,龙凤网站建设费用合理。
第一种np.where(condition, x, y)
,即condition为条件,当满足条件输出为x,不满足条件则输出y.直接上代码:
a = np.arange(10) //array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) print(np.where(a > 5, 1, -1)) //array([-1, -1, -1, -1, -1, -1, 1, 1, 1, 1])
上面的挺好理解的,但是官网的例子不是太好理解,如下所示:
np.where([[True,False], [True,True]], [[1,2], [3,4]], [[9,8], [7,6]]) // 输出 array([[1, 8], [3, 4]])
可以这么理解,第一行的bool值表示条件,它表示是否取值的意思,首先看[True,False],即第一的True值表示第一行取数值第一行的[1, 2]中的1,而不取下面的9,False表示不取第一行[1, 2]中的2,而取第二行[9, 8]中的8.下面同理得[3, 4].
为了方便理解再举一个例子:
a = 10 >>> np.where([[a > 5,a < 5], [a == 10,a == 7]], [["chosen","not chosen"], ["chosen","not chosen"]], [["not chosen","chosen"], ["not chosen","chosen"]]) //array([['chosen', 'chosen'], ['chosen', 'chosen']], dtype='<U10')
第一行a>5True,则取第一行的第一个值,a<5取第二行的第二个值,下面也同理.
理解完第一种方法后,再来看np.where第二种方法:
即np.where(condition),只有条件 (condition),没有x和y,则输出满足条件 (即非0) 元素的坐标 (等价于numpy.nonzero)。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。
>>> a = np.array([2,4,6,8,10]) >>> np.where(a > 5) //(array([2, 3, 4]),) 返回索引值 >>> a[np.where(a > 5)] //array([ 6, 8, 10]) 返回元素值,即a[索引]
举一个代码例子,也是我遇到的:
a = array([[0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [1., 0.], [0., 1.], [0., 1.], [0., 1.], [1., 0.], [1., 0.], [0., 1.], [0., 1.], [1., 0.], [0., 1.], [1., 0.], [0., 1.]]) np.where(a == 1) //(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, // 17, 18, 19], dtype=int64), // array([1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1], // dtype=int64))
返回的两个array数组分表示第几行的第几个值为1,所以结果中的第一个array数组表示行索引,第二个array数组表示列索引也就是1的碎银索引.
1.np.where(condition,x,y) 当where内有三个参数时,第一个参数表示条件,当条件成立时where方法返回x,当条件不成立时where返回y
2.np.where(condition) 当where内只有一个参数时,那个参数表示条件,当条件成立时,where返回的是每个符合condition条件元素的坐标,返回的是以元组的形式
3.多条件时condition,&表示与,|表示或。如a = np.where((0<a)&(a<5), x, y),当0<a与a<5满足时,返回x的值,当0<a与a<5不满足时,返回y的值。注意x, y必须和a保持相同尺寸。
例如:
import numpy as np data = np.array([[0, 2, 0], [3, 1, 2], [0, 4, 0]]) new_data = np.where((data>= 0) & (data<=2), np.ones_like(data), np.zeros_like(data)) print(new_data)
结果:
[[1 1 1]
[0 1 1]
[1 0 1]]
从中可以看出data中每个元素只要满足data>=0并且data<=2, 满足就返回np.ones_like(data)对应坐标的值,不满足就返回np.zeros_like(data)对应坐标的值。当然x , y可以换成其他的值,只要与条件相同尺寸就可以。
以上就是关于“Python之np.where()的代码怎么应用”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注创新互联行业资讯频道。
文章题目:Python之np.where()的代码怎么应用
文章起源:https://www.cdcxhl.com/article44/jijhhe.html
成都网站建设公司_创新互联,为您提供动态网站、自适应网站、手机网站建设、面包屑导航、网站设计、软件开发
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联