python出现nan的解决方法-创新互联

创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!

在贡觉等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站制作、网站建设 网站设计制作按需求定制制作,公司网站建设,企业网站建设,品牌网站制作,成都全网营销,外贸网站建设,贡觉网站建设费用合理。

小编给大家分享一下python出现nan的解决方法,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨方法吧!

很多数据不可避免的会遗失掉,或者采集的时候采集对象不愿意透露,这就造成了很多NaN(Not a Number)的出现。这些NaN会造成大部分模型运行出错,所以对NaN的处理很有必要。

解决方法:

1、简单粗暴地去掉

1)有如下dataframe,先用df.isnull().sum()检查下哪一列有多少NaN:

import pandas as pd
df = pd.DataFrame({'a':[None,1,2,3],'b':[4,None,None,6],'c':[1,2,1,2],'d':[7,7,9,2]})
print (df)
print (df.isnull().sum())

输出:

python出现nan的解决方法

2)将含有NaN的列(columns)去掉:

data_without_NaN =df.dropna(axis=1)
print (data_without_NaN)

输出:

python出现nan的解决方法

2、遗失值插补法

很多时候直接删掉列会损失很多有价值的数据,不利于模型的训练。

所以可以考虑将NaN替换成某些数,显然不能随随便便替换,有人喜欢替换成0,往往会画蛇添足。

譬如调查工资收入与学历高低的关系,有的人不想透露工资水平,但如果给这些NaN设置为0很显然会失真。所以Python有个Imputation(插补)的方法。代码如下:

from sklearn.preprocessing import Imputer
my_imputer = Imputer()
data_imputed = my_imputer.fit_transform(df)
print (type(data_imputed))
# array转换成df
df_data_imputed = pd.DataFrame(data_imputed,columns=df.columns)
print (df_data_imputed)

输出:

python出现nan的解决方法

可以看出,这里大概是用平均值进行了替换。

看完了这篇文章,相信你对python出现nan的解决方法有了一定的了解,想了解更多相关知识,欢迎关注创新互联-成都网站建设公司行业资讯频道,感谢各位的阅读!

分享题目:python出现nan的解决方法-创新互联
网站链接:https://www.cdcxhl.com/article44/dphjhe.html

成都网站建设公司_创新互联,为您提供网站维护小程序开发网站设计动态网站自适应网站网站内链

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

h5响应式网站建设