SQL的数据清洗方法有哪些

这篇文章主要讲解了“SQL的数据清洗方法有哪些”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“SQL的数据清洗方法有哪些”吧!

成都创新互联公司专注于柘荣企业网站建设,响应式网站,商城系统网站开发。柘荣网站建设公司,为柘荣等地区提供建站服务。全流程按需定制制作,专业设计,全程项目跟踪,成都创新互联公司专业和态度为您提供的服务

大纲如图:

SQL的数据清洗方法有哪些

01 删除指定列、重命名列

场景:

多数情况并不是底表的所有特征(列)都对分析有用,这个时候就只需要抽取部分列,对于不用的那些列,可以删除。

重命名列可以避免有些列的命名过于冗长(比如Case When 语句),且有时候会根据不同的业务指标需求来命名。

删除列Python版:

df.drop(col_names, axis=1, inplace=True)

删除列SQL版:

select col_names from Table_Name alter table tableName drop column columnName

重命名列Python版:

df.rename(index={'row1':'A'},columns ={'col1':'B'})

重命名列SQL版:

select col_names as col_name_B from Table_Name

因为一般情况下是没有删除的权限(可以构建临时表),反向思考,删除的另一个逻辑是选定指定列(Select)。

02 重复值、缺失值处理

场景:比如某网站今天来了1000个人访问,但一个人一天中可以访问多次,那数据库中会记录用户访问的多条记录,而这时候如果想要找到今天访问这个网站的1000个人的ID并根据此做用户调研,需要去掉重复值给业务方去回访。

缺失值:NULL做运算逻辑时,返回的结果还是NULL,这可能就会出现一些脚本运行正确,但结果不对的BUG,此时需要将NULL值填充为指定值。

重复值处理Python版:

df.drop_duplicates()

重复值处理SQL版:

select distinct col_name from Table_Name select col_name from Table_Name group bycol_name

缺失值处理Python版:

df.fillna(value = 0)df1.combine_first(df2)

缺失值处理SQL版:

select ifnull(col_name,0) value from Table_Name  select coalesce(col_name,col_name_A,0) as value from Table_Name  select case when col_name is null then 0 else col_name end from Table_Name

03 替换字符串空格、清洗*%@等垃圾字符、字符串拼接、分隔等字符串处理

场景:理解用户行为的重要一项是去假设用户的心理,这会用到用户的反馈意见或一些用研的文本数据,这些文本数据一般会以字符串的形式存储在数据库中,但用户反馈的这些文本一般都会很乱,所以需要从这些脏乱的字符串中提取有用信息,就会需要用到文字符串处理函数。

字符串处理Python版:

## 1、空格处理  df[col_name] = df[col_name].str.lstrip()  ## 2、*%d等垃圾符处理  df[col_name].replace(' &#.*', '', regex=True, inplace=True  )## 3、字符串分割  df[col_name].str.split('分割符')  ## 4、字符串拼接  df[col_name].str.cat()

字符串处理SQL版:

## 1、空格处理  select ltrim(col_name) from Table_name  ## 2、*%d等垃圾符处理  select regexp_replace(col_name,正则表达式) from Table_name  ## 3、字符串分割  select split(col_name,'分割符') from Table_name  ## 4、字符串拼接  select concat_ws(col_name,'拼接符') from Table_name

04 合并处理

场景:有时候你需要的特征存储在不同的表里,为便于清洗理解和操作,需要按照某些字段对这些表的数据进行合并组合成一张新的表,这样就会用到连接等方法。

合并处理Python版:

左右合并

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)  pd.concat([df1,df2])上下合并df1.append(df2, ignore_index=True, sort=False)

合并处理SQL版:

左右合并

select A.*,B.* from Table_a A join Table_b B on A.id = B.id  select A.* from Table_a A left join Table_b B on A.id = B.id

上下合并

## Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;  ##Union All:对两个结果集进行并集操作,包括重复行,不进行排序;  select A.* from Table_a A  union  select B.* from Table_b B  # Union 因为会将各查询子集的记录做比较,故比起Union All ,通常速度都会慢上许多。一般来说,如果使用Union All能满足要求的话,务必使用Union All。

05、窗口函数的分组排序

场景:假如现在你是某宝的分析师,要分析今年不同店的不同品类销售量情况,需要找到那些销量较好的品类,并在第二年中加大曝光,这个时候你就需要将不同店里不同品类进行分组,并且按销量进行排序,以便查找到每家店销售较好的品类。

SQL的数据清洗方法有哪些

Demo数据如上,一共a,b,c三家店铺,卖了不同品类商品,销量对应如上,要找到每家店卖的最多的商品。

窗口分组Python版:

df['Rank'] = df.groupby(by=['Sale_store'])['Sale_Num'].transform(lambda x: x.rank(ascending=False))

窗口分组SQL版:

select    *  from   (   Select      *,     row_number() over(partition by Sale_store order by Sale_Num desc) rk   from      table_name   ) b where b.rk = 1

SQL的数据清洗方法有哪些

可以很清晰的看到,a店铺卖的最火的是蔬菜,c店铺卖的最火的是鸡肉,b店铺?

嗯,b店铺很不错,卖了888份宝器狗。

感谢各位的阅读,以上就是“SQL的数据清洗方法有哪些”的内容了,经过本文的学习后,相信大家对SQL的数据清洗方法有哪些这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!

名称栏目:SQL的数据清洗方法有哪些
文章转载:https://www.cdcxhl.com/article42/jccsec.html

成都网站建设公司_创新互联,为您提供服务器托管网站设计公司企业建站关键词优化做网站网站导航

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

成都网页设计公司