狄拉克函数python 狄拉克函数的挑选性

python sympy怎样把狄克拉函数定义出来

from sympy import DiracDelta

创新互联从2013年创立,是专业互联网技术服务公司,拥有项目网站设计、成都做网站网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元阳西做网站,已为上家服务,为阳西各地企业和个人服务,联系电话:13518219792

即导入了狄拉克函数,可以送入一个变量求解,如:

DiracDelta(2)

输出0。

狄拉克函数性质

狄拉克δ函数是一个广义函数,在物理学中常用其表示质点、点电荷等理想模型的密度分布,该函数在除了零以外的点取值都等于零,而其在整个定义域上的积分等于1。

狄拉克δ函数在概念上,它是这么一个“函数”:在除了零以外的点函数值都等于零,而其在整个定义域上的积分等于1。

物理学中常常要研究一个物理量在空间或时间中分布的密度,例如质量密度、电荷密度、每单位时间传递的动量(即力)等等,但是物理学中又常用到质点、点电荷、瞬时力等抽象模型,他们不是连续分布于空间或时间中,而是集中在空间中的某一点或者时间中的某一瞬时,那么它们的密度应该如何表示呢?

严格来说δ函数不能算是一个函数,因为满足以上条件的函数是不存在的。数学上,人们为这类函数引入了广义函数的概念,在广义函数的理论中,δ函数的确切意义应该是在积分意义下来理解。在实际应用中,δ函数总是伴随着积分一起出现 。δ分布在偏微分方程、数学物理方法、傅立叶分析和概率论里都有很重要的应用。

一些函数可以认为是狄拉克δ函数的近似,但是要注意,这些函数都是通过极限构造的,因此严格上都不是狄拉克δ函数本身,不过在一些数学计算中可以作为狄拉克δ函数进行计算。

狄拉克δ函数有以下性质 ,在理解这些性质的时候,应该认为等式两边分别作为被积函数的因子时得到的结果相等。

对称性

偶函数,其导数是奇函数

放缩

放缩(或相似性)

挑选性

这种性质称为挑选性,它将 在 点的值 挑选出来

上述性质则可看成适用于高阶导数的挑选性。

什么是狄拉克函数

有时也说单位脉冲函数。通常用δ表示。在概念上,它是这么一个“函数”:在除了零以外的点都等于零,而其在整个定义域上的积分等于1。严格来说狄拉克δ函数不能算是一个函数,因为满足以上条件的函数是不存在的。

本文标题:狄拉克函数python 狄拉克函数的挑选性
转载来于:https://www.cdcxhl.com/article42/dooeohc.html

成都网站建设公司_创新互联,为您提供网站建设网站排名电子商务网页设计公司品牌网站设计定制网站

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

网站托管运营