c语言熵函数 c的熵是多少

跪求C4.5算法,C语言的……

具体算法步骤如下; 1创建节点N 2如果训练集为空,在返回节点N标记为Failure 3如果训练集中的所有记录都属于同一个类别,则以该类别标记节点N 4如果候选属性为空,则返回N作为叶节点,标记为训练集中最普通的类; 5for each 候选属性 attribute_list 6if 候选属性是联系的then 7对该属性进行离散化 8选择候选属性attribute_list中具有最高信息增益的属性D 9标记节点N为属性D 10for each 属性D的一致值d 11由节点N长出一个条件为D=d的分支 12设s是训练集中D=d的训练样本的集合 13if s为空 14加上一个树叶,标记为训练集中最普通的类 15else加上一个有C4.5(R - {D},C,s)返回的点

创新互联-专业网站定制、快速模板网站建设、高性价比龙州网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式龙州网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖龙州地区。费用合理售后完善,十多年实体公司更值得信赖。

C++代码你可以参考下

C4.5算法源代码(C++)

// C4.5_test.cpp : Defines the entry point for the console application.

//

#include "stdafx.h"

#include stdio.h

#include math.h

#include "malloc.h"

#include stdlib.h

const int MAX = 10;

int** iInput;

int i = 0;//列数

int j = 0;//行数

void build_tree(FILE *fp, int* iSamples, int* iAttribute,int ilevel);//输出规则

int choose_attribute(int* iSamples, int* iAttribute);//通过计算信息增益率选出test_attribute

double info(double dTrue,double dFalse);//计算期望信息

double entropy(double dTrue, double dFalse, double dAll);//求熵

double splitinfo(int* list,double dAll);

int check_samples(int *iSamples);//检查samples是否都在同一个类里

int check_ordinary(int *iSamples);//检查最普通的类

int check_attribute_null(int *iAttribute);//检查attribute是否为空

void get_attributes(int *iSamples,int *iAttributeValue,int iAttribute);

int _tmain(int argc, _TCHAR* argv[])

{

FILE *fp;

FILE *fp1;

char iGet;

int a = 0;

int b = 0;//a,b是循环变量

int* iSamples;

int* iAttribute;

fp = fopen("c:\\input.txt","r");

if (NULL == fp)

{

printf("error\n");

return 0;

}

iGet = getc(fp);

while (('\n' != iGet)(EOF != iGet))

{

if (',' == iGet)

{

i++;

}

iGet = getc(fp);

}

i++;

iAttribute = (int *)malloc(sizeof(int)*i);

for (int k = 0; ki; k++)

{

iAttribute[k] = (int)malloc(sizeof(int));

iAttribute[k] = 1;

}

while (EOF != iGet)

{

if ('\n' == iGet)

{

j++;

}

iGet = getc(fp);

}

j++;

iInput = (int **)malloc(sizeof(int*)*j);

iSamples = (int *)malloc(sizeof(int)*j);

for (a = 0;a j;a++)

{

iInput[a] = (int *)malloc(sizeof(int)*i);

iSamples[a] = (int)malloc(sizeof(int));

iSamples[a] = a;

}

a = 0;

fclose(fp);

fp=fopen("c:\\input.txt","r");

iGet = getc(fp);

while(EOF != iGet)

{

if ((',' != iGet)('\n' != iGet))

{

iInput[a][b] = iGet - 48;

b++;

}

if (b == i)

{

a++;

b = 0;

}

iGet = getc(fp);

}

fp1 = fopen("d:\\output.txt","w");

build_tree(fp1,iSamples,iAttribute,0);

fclose(fp);

return 0;

}

void build_tree(FILE * fp, int* iSamples, int* iAttribute,int level)//

{

int iTest_Attribute = 0;

int iAttributeValue[MAX];

int k = 0;

int l = 0;

int m = 0;

int *iSamples1;

for (k = 0; kMAX; k++)

{

iAttributeValue[k] = -1;

}

if (0 == check_samples(iSamples))

{

fprintf(fp,"result: %d\n",iInput[iSamples[0]][i-1]);

return;

}

if (1 == check_attribute_null(iAttribute))

{

fprintf(fp,"result: %d\n",check_ordinary(iSamples));

return;

}

iTest_Attribute = choose_attribute(iSamples,iAttribute);

iAttribute[iTest_Attribute] = -1;

get_attributes(iSamples,iAttributeValue,iTest_Attribute);

k = 0;

while ((-1 != iAttributeValue[k])(k MAX))

{

l = 0;

m = 0;

while ((-1 != iSamples[l])(l j))

{

if (iInput[iSamples[l]][iTest_Attribute] == iAttributeValue[k])

{

m++;

}

l++;

}

iSamples1 = (int *)malloc(sizeof(int)*(m+1));

l = 0;

m = 0;

while ((-1 != iSamples[l])(l j))

{

if (iInput[iSamples[l]][iTest_Attribute] == iAttributeValue[k])

{

iSamples1[m] = iSamples[l];

m++;

}

l++;

}

iSamples1[m] = -1;

if (-1 == iSamples1[0])

{

fprintf(fp,"result: %d\n",check_ordinary(iSamples));

return;

}

fprintf(fp,"level%d: %d = %d\n",level,iTest_Attribute,iAttributeValue[k]);

build_tree(fp,iSamples1,iAttribute,level+1);

k++;

}

}

int choose_attribute(int* iSamples, int* iAttribute)

{

int iTestAttribute = -1;

int k = 0;

int l = 0;

int m = 0;

int n = 0;

int iTrue = 0;

int iFalse = 0;

int iTrue1 = 0;

int iFalse1 = 0;

int iDepart[MAX];

int iRecord[MAX];

double dEntropy = 0.0;

double dGainratio = 0.0;

double test = 0.0;

for (k = 0;kMAX;k++)

{

iDepart[k] = -1;

iRecord[k] = 0;

}

k = 0;

while ((l!=2)(k(i - 1)))

{

if (iAttribute[k] == -1)

{

l++;

}

k++;

}

if (l == 1)

{

for (k = 0;k(k-1);k++)

{

if (iAttribute[k] == -1)

{

return iAttribute[k];

}

}

}

for (k = 0;k (i-1);k++)

{

l = 0;

iTrue = 0;

iFalse = 0;

if (iAttribute[k] != -1)

{

while ((-1 != iSamples[l])(l j))

{

if (0 == iInput[iSamples[l]][i-1])

{

iFalse++;

}

if (1 == iInput[iSamples[l]][i-1])

{

iTrue++;

}

l++;

}

for (n = 0;nl;n++)//计算该属性有多少不同的值并记录

{

m = 0;

while((iDepart[m]!=-1)(m!=MAX))

{

if (iInput[iSamples[n]][iAttribute[k]] == iDepart[m])

{

break;

}

m++;

}

if (-1 == iDepart[m])

{

iDepart[m] = iInput[iSamples[n]][iAttribute[k]];

}

}

while ((iDepart[m] != -1)(m!=MAX))

{

for (n = 0;nl;n++)

{

if (iInput[iSamples[n]][iAttribute[k]] == iDepart[m])

{

if (1 == iInput[iSamples[n]][i-1])

{

iTrue1++;

}

if (0 == iInput[iSamples[n]][i-1])

{

iFalse1++;

}

iRecord[m]++;

}

}

dEntropy += entropy((double)iTrue1,(double)iFalse1,(double)l);

iTrue1 = 0;

iFalse1 = 0;

m++;

}

double dSplitinfo = splitinfo(iRecord,(double)l);

if (-1 == iTestAttribute)

{

iTestAttribute = k;

dGainratio = (info((double)iTrue,(double)iFalse)-dEntropy)/dSplitinfo;

}

else

{

test = (info((double)iTrue,(double)iFalse)-dEntropy)/dSplitinfo;

if (dGainratio test)

{

iTestAttribute = k;

dGainratio = test;

}

}

}

}

return iTestAttribute;

}

double info(double dTrue,double dFalse)

{

double dInfo = 0.0;

dInfo = ((dTrue/(dTrue+dFalse))*(log(dTrue/(dTrue+dFalse))/log(2.0))+(dFalse/(dTrue+dFalse))*(log(dFalse/(dTrue+dFalse))/log(2.0)))*(-1);

return dInfo;

}

double entropy(double dTrue, double dFalse, double dAll)

{

double dEntropy = 0.0;

dEntropy = (dTrue + dFalse)*info(dTrue,dFalse)/dAll;

return dEntropy;

}

double splitinfo(int* list,double dAll)

{

int k = 0;

double dSplitinfo = 0.0;

while (0!=list[k])

{

dSplitinfo -= ((double)list[k]/(double)dAll)*(log((double)list[k]/(double)dAll));

k++;

}

return dSplitinfo;

}

int check_samples(int *iSamples)

{

int k = 0;

int b = 0;

while ((-1 != iSamples[k])(k j-1))

{

if (iInput[k][i-1] != iInput[k+1][i-1])

{

b = 1;

break;

}

k++;

}

return b;

}

int check_ordinary(int *iSamples)

{

int k = 0;

int iTrue = 0;

int iFalse = 0;

while ((-1 != iSamples[k])(k i))

{

if (0 == iInput[iSamples[k]][i-1])

{

iFalse++;

}

else

{

iTrue++;

}

k++;

}

if (iTrue = iFalse)

{

return 1;

}

else

{

return 0;

}

}

int check_attribute_null(int *iAttribute)

{

int k = 0;

while (k (i-1))

{

if (-1 != iAttribute[k])

{

return 0;

}

k++;

}

return 1;

}

void get_attributes(int *iSamples,int *iAttributeValue,int iAttribute)

{

int k = 0;

int l = 0;

while ((-1 != iSamples[k])(k j))

{

l = 0;

while (-1 != iAttributeValue[l])

{

if (iInput[iSamples[k]][iAttribute] == iAttributeValue[l])

{

break;

}

l++;

}

if (-1 == iAttributeValue[l])

{

iAttributeValue[l] = iInput[iSamples[k]][iAttribute];

}

k++;

}

}

如何用C++语言计算一幅图像信息的熵

1、熵是描述区域的随机程度的,P=ΣC*logC,C是灰度概率值,当图像均匀时,各灰度值的概率基本相等,熵可以达到最大

2、例程:

#includeiostream.h

#includemath.h

int i,j;

double rowsum(double table[][4],int nrow)//定义第i行的边际概率函数

{

for(i=0;inrow;i++)

{

for( j=1;j4;j++)

table[i][0]+=table[i][j]; 

}

return 0;

}

double liesum(double table[4][4],int nlie)//定义第j列的边际概率函数

{ for( j=0;jnlie;j++)

{

for( i=1;i4;i++)

table[0][j]+=table[i][j];

}

return 0;

}

void main()

double p[4][4]={{1.0/8.0,1.0/16.0,1.0/32.0,1.0/32.0},{1.0/16.0,1.0/8.0,1.0/32.0,1.0/32.0},

{1.0/16.0,1.0/16.0,1.0/16.0,1.0/16.0},{1.0/4.0,0.0,0.0,0.0}};

for ( i=0;i4;i++)//输出概率矩阵

{

for ( j=0;j4;j++)

coutp[i][j]" ";

coutendl;      

}coutendl; 

rowsum(p,4);//调用函数输出第i行的边际概率 

for (i =0;i4;i++)

{cout"第"i"行的边际概率p""["i"]""是"p[i][0]endl;}coutendl;

liesum(p,4);//调用函数输出第j列的边际概率

for ( j =0;j4;j++)

{cout"第"j"列的条件概率p""["j"]""是"p[0][j]endl;}coutendl;

// double p[4][4];

double H1=0.0;

for( i=0;i4;i++)

{H1+=p[i][0]*(log((1.0/p[i][0])/log(2.0)));}

double H2=0.0;

for( j=0;j4;j++)

{H2+=p[0][j]*(log((1.0/p[0][j])/log(2.0)));}

double H3=0.0; 

for(i=0;i3;i++)

for(j=0;j4;j++) 

{H3+=p[i][j]*(log(1.0/p[i][j])/log(2.0));}

H3+=p[4][1]*(log(1.0/p[4][1])/log(2.0));

cout"X的熵:H(X)="H1endl;

cout"Y的熵:H(Y)="H2endl;

cout"(X,Y)的熵:H(X,Y)="H3endl;

coutendl;

cout"条件熵:H(X|Y)="H3-H2endl;

cout"条件熵:H(Y|X)="H3-H1endl;

cout"互信息:I(X;Y)="H1+H2-H3endl;

int size=4;//定义联合概率p为维数组

double *p;

p=new double[size]; 

for ( i=0;i4;i++)//联合概率计算

{

for ( j=0;j4;j++)

{

/*int nSize; 

scanf( "%d", nSize ); 

int *p = ( int* )malloc( sizeof( int ) * nSize ); 

for( int i = 0; i  nSize; i++ ) 

p[ i ] = 0;

double table[4][4];

p[i]=pp[0][i]*table[i][j];

cout"联合概率""p""["i"]""["j"]""是"p[i]endl;

}

}

for ( i=0;i4;i++)//联合熵的计算

{

for ( j=0;j4;j++)

{   

// H+=p[i][j]*log(1.0/p[i][j]);

H+=p[i]*(log((1.0/p[i])/log(2.0)));

}

}

cout"联合H(x,y)熵为"Hendl;

delete []p; */

}

用c语言求信源熵怎么编程

#include stdio.h

#include string.h

#includemath.h

int main()//是少了main函数,程序里面一定要有main函数的

{

double p[100];//每个信源的概率

int n;//信源个数

int i;

double sum=0;

scanf("%d",n);

for(i=0;in;i++)

{

scanf("%lf",p[i]);

sum+=-p[i]*(log(p[i])/log(2.0));

}

printf("%lf\n",sum);

return 0;

}

当前文章:c语言熵函数 c的熵是多少
网站地址:https://www.cdcxhl.com/article40/hpiseo.html

成都网站建设公司_创新互联,为您提供网站营销品牌网站设计品牌网站建设移动网站建设服务器托管网站维护

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

成都定制网站建设