Python实现矩阵相乘的方法有哪些-创新互联

这篇文章将为大家详细讲解有关Python实现矩阵相乘的方法有哪些,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

目前创新互联公司已为上千家的企业提供了网站建设、域名、雅安服务器托管、网站托管维护、企业网站设计、富顺网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。

问题描述

分别实现矩阵相乘的3种算法,比较三种算法在矩阵大小分别为22∗2222∗22, 23∗2323∗23, 24∗2424∗24, 25∗2525∗25, 26∗2626∗26, 27∗2727∗27, 28∗2828∗28, 29∗2929∗29时的运行时间与MATLAB自带的矩阵相乘的运行时间,绘制时间对比图。

解题方法

本文采用了以下方法进行求值:矩阵计算法、定义法、分治法和Strassen方法。这里我们使用Matlab以及Python对这个问题进行处理,比较两种语言在一样的条件下,运算速度的差别。

编程语言

Python

具体代码

#-*- coding: utf-8 -*-
from matplotlib.font_manager import FontProperties
import numpy as np
import time
import random
import math
import copy
import matplotlib.pyplot as plt

#n = [2**2, 2**3, 2**4, 2**5, 2**6, 2**7, 2**8, 2**9, 2**10, 2**11, 2**12]
n = [2**2, 2**3, 2**4, 2**5, 2**6, 2**7, 2**8, 2**9, 2**10, 2**11]
Sum_time1 = []
Sum_time2 = []
Sum_time3 = []
Sum_time4 = []
for m in n:
 A = np.random.randint(0, 2, [m, m])
 B = np.random.randint(0, 2, [m, m])
 A1 = np.mat(A)
 B1 = np.mat(B)
 time_start = time.time()
 C1 = A1*B1
 time_end = time.time()
 Sum_time1.append(time_end - time_start)

 C2 = np.zeros([m, m], dtype = np.int)
 time_start = time.time()
 for i in range(m):
  for k in range(m):
   for j in range(m):
    C2[i, j] = C2[i, j] + A[i, k] * B[k, j]
 time_end = time.time()
 Sum_time2.append(time_end - time_start)
 A11 = np.mat(A[0:m//2, 0:m//2])
 A12 = np.mat(A[0:m//2, m//2:m])
 A21 = np.mat(A[m//2:m, 0:m//2])
 A22 = np.mat(A[m//2:m, m//2:m])
 B11 = np.mat(B[0:m//2, 0:m//2])
 B12 = np.mat(B[0:m//2, m//2:m])
 B21 = np.mat(B[m//2:m, 0:m//2])
 B22 = np.mat(B[m//2:m, m//2:m])
 time_start = time.time()
 C11 = A11 * B11 + A12 * B21
 C12 = A11 * B12 + A12 * B22
 C21 = A21 * B11 + A22 * B21
 C22 = A21 * B12 + A22 * B22
 C3 = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))
 time_end = time.time()
 Sum_time3.append(time_end - time_start)
 time_start = time.time()
 M1 = A11 * (B12 - B22)
 M2 = (A11 + A12) * B22
 M3 = (A21 + A22) * B11
 M4 = A22 * (B21 - B11)
 M5 = (A11 + A22) * (B11 + B22)
 M6 = (A12 - A22) * (B21 + B22)
 M7 = (A11 - A21) * (B11 + B12)
 C11 = M5 + M4 - M2 + M6
 C12 = M1 + M2
 C21 = M3 + M4
 C22 = M5 + M1 - M3 - M7
 C4 = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))
 time_end = time.time()
 Sum_time4.append(time_end - time_start)

f1 = open('python_time1.txt', 'w')
for ele in Sum_time1:
 f1.writelines(str(ele) + '\n')
f1.close()

f2 = open('python_time2.txt', 'w')
for ele in Sum_time2:
 f2.writelines(str(ele) + '\n')
f2.close()

f3 = open('python_time3.txt', 'w')
for ele in Sum_time3:
 f3.writelines(str(ele) + '\n')
f3.close()

f4 = open('python_time4.txt', 'w')
for ele in Sum_time4:
 f4.writelines(str(ele) + '\n')
f4.close()

font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=8)
plt.figure(1)
plt.subplot(221)
plt.semilogx(n, Sum_time1, 'r-*')
plt.ylabel(u"时间(s)", fontproperties=font)
plt.xlabel(u"矩阵的维度n", fontproperties=font)
plt.title(u'python自带的方法', fontproperties=font)
plt.subplot(222)
plt.semilogx(n, Sum_time2, 'b-*')
plt.ylabel(u"时间(s)", fontproperties=font)
plt.xlabel(u"矩阵的维度n", fontproperties=font)
plt.title(u'定义法', fontproperties=font)
plt.subplot(223)
plt.semilogx(n, Sum_time3, 'y-*')
plt.ylabel(u"时间(s)", fontproperties=font)
plt.xlabel(u"矩阵的维度n", fontproperties=font)
plt.title( u'分治法', fontproperties=font)
plt.subplot(224)
plt.semilogx(n, Sum_time4, 'g-*')
plt.ylabel(u"时间(s)", fontproperties=font)
plt.xlabel(u"矩阵的维度n", fontproperties=font)
plt.title( u'Strasses法', fontproperties=font)
plt.figure(2)
plt.semilogx(n, Sum_time1, 'r-*', n, Sum_time2, 'b-+', n, Sum_time3, 'y-o', n, Sum_time4, 'g-^')
#plt.legend(u'python自带的方法', u'定义法', u'分治法', u'Strasses法', fontproperties=font)
plt.show()

关于“Python实现矩阵相乘的方法有哪些”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。

本文题目:Python实现矩阵相乘的方法有哪些-创新互联
文章URL:https://www.cdcxhl.com/article40/dddceo.html

成都网站建设公司_创新互联,为您提供外贸网站建设动态网站网站收录搜索引擎优化网站营销域名注册

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

绵阳服务器托管