这篇文章主要介绍Hadoop MultipleOutputs如何输出到多个文件中,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
目前创新互联建站已为成百上千的企业提供了网站建设、域名、网络空间、网站托管维护、企业网站设计、长洲网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。Hadoop MultipleOutputs输出到多个文件中的实现方法
1.输出到多个文件或多个文件夹:
驱动中不需要额外改变,只需要在MapClass或Reduce类中加入如下代码
private MultipleOutputs<Text,IntWritable> mos; public void setup(Context context) throws IOException,InterruptedException { mos = new MultipleOutputs(context); } public void cleanup(Context context) throws IOException,InterruptedException { mos.close(); }
然后就可以用mos.write(Key key,Value value,String baseOutputPath)代替context.write(key, value);
在MapClass或Reduce中使用,输出时也会有默认的文件part-m-00*或part-r-00*,不过这些文件是无内容的,大小为0. 而且只有part-m-00*会传给Reduce。
注意:multipleOutputs.write(key, value, baseOutputPath)方法的第三个函数表明了该输出所在的目录(相对于用户指定的输出目录)。
如果baseOutputPath不包含文件分隔符“/”,那么输出的文件格式为baseOutputPath-r-nnnnn(name-r-nnnnn);
如果包含文件分隔符“/”,例如baseOutputPath=“029070-99999/1901/part”,那么输出文件则为029070-99999/1901/part-r-nnnnn
2.案例-需求
需求,下面是有些测试数据,要对这些数据按类目输出到output中:
1512,iphone5s,4英寸,指纹识别,A7处理器,64位,M7协处理器,低功耗 1512,iphone5,4英寸,A6处理器,IOS7 1512,iphone4s,3.5英寸,A5处理器,双核,经典 50019780,ipad,9.7英寸,retina屏幕,丰富的应用 50019780,yoga,联想,待机18小时,外形独特 50019780,nexus 7,华硕&google,7英寸 50019780,ipad mini 2,retina显示屏,苹果,7.9英寸 1101,macbook air,苹果超薄,OS X mavericks 1101,macbook pro,苹果,OS X lion 1101,thinkpad yoga,联想,windows 8,超级本
3.Mapper程序:
package cn.edu.bjut.multioutput; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class MultiOutPutMapper extends Mapper<LongWritable, Text, IntWritable, Text> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString().trim(); if(null != line && 0 != line.length()) { String[] arr = line.split(","); context.write(new IntWritable(Integer.parseInt(arr[0])), value); } } }
4.Reducer程序:
package cn.edu.bjut.multioutput; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs; public class MultiOutPutReducer extends Reducer<IntWritable, Text, NullWritable, Text> { private MultipleOutputs<NullWritable, Text> multipleOutputs = null; @Override protected void reduce(IntWritable key, Iterable<Text> values, Context context) throws IOException, InterruptedException { for(Text text : values) { multipleOutputs.write("KeySpilt", NullWritable.get(), text, key.toString()+"/"); multipleOutputs.write("AllPart", NullWritable.get(), text); } } @Override protected void setup(Context context) throws IOException, InterruptedException { multipleOutputs = new MultipleOutputs<NullWritable, Text>(context); } @Override protected void cleanup(Context context) throws IOException, InterruptedException { if(null != multipleOutputs) { multipleOutputs.close(); multipleOutputs = null; } } }
5.主程序:
package cn.edu.bjut.multioutput; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; public class MainJob { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = new Job(conf, "aaa"); job.setJarByClass(MainJob.class); job.setMapperClass(MultiOutPutMapper.class); job.setMapOutputKeyClass(IntWritable.class); job.setMapOutputValueClass(Text.class); job.setReducerClass(MultiOutPutReducer.class); job.setOutputKeyClass(NullWritable.class); job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(args[0])); MultipleOutputs.addNamedOutput(job, "KeySpilt", TextOutputFormat.class, NullWritable.class, Text.class); MultipleOutputs.addNamedOutput(job, "AllPart", TextOutputFormat.class, NullWritable.class, Text.class); Path outPath = new Path(args[1]); FileSystem fs = FileSystem.get(conf); if(fs.exists(outPath)) { fs.delete(outPath, true); } FileOutputFormat.setOutputPath(job, outPath); job.waitForCompletion(true); } }
以上是“Hadoop MultipleOutputs如何输出到多个文件中”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!
网站标题:HadoopMultipleOutputs如何输出到多个文件中-创新互联
文章链接:https://www.cdcxhl.com/article4/dddsie.html
成都网站建设公司_创新互联,为您提供微信小程序、域名注册、建站公司、小程序开发、网站营销、关键词优化
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联