bfsjava代码 javafx代码

JAVA求10个景点间各个景点的最短路径 图随便话 距离随便 求代码

最有效,切不复杂的方法使用Breadth First Search (BFS). 基本代码如下(伪代码)。因为BFS不用递归,所以可能会有点难理解。

武义ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:028-86922220(备注:SSL证书合作)期待与您的合作!

public Stack findPath(Vertex 起始景点, Vertex 目标景点){

Queue Vertex q = new QueueVertex();

s.enqueue(起始景点);

Vertex 当前位置;

while(!s.isEmpty()){

当前位置 = s.dequeue();

if (当前位置 == 目标景点) break;

for (每一个相邻于 当前位置 的景点 Vertex v){

if (!v.visited){

v.parent = 当前位置;

// 不是规定,不过可以节省一点时间

if (v == 目标景点){

current = v;

break;

}

s.enqueue(Vertex v);

v.visited = true;

}

}

}

Stack Vertex solution = new Stack Vertex();

Vertex parent = current;

while (parent != 起始景点){

solution.push(parent);

parent = current.parent;

}

for (graph中的每一个vertex) vertex.visited = false;

return solution(); // 其实这里建议用一个 Path 的inner class 来装所获得的路线

}

然后再 main 求每两个景点之间的距离即可

public static void main(String[] argv){

PathFinder pf = new PathFinder();

Stack[][] 路径 = new Stack[10][10];

for(int i=0; ipf.vertices.length; i++){

for(int j=i+1; jpf.vertices.length; j++){

Stack s = pf.findPath(pf.vertices[i], pf.vertices[j]);

路径[i][j] = s; 路径[j][i] = s; // 假设你的graph是一个undirected graph

}

}

// 这么一来就大功告成了!对于每两个景点n 与 m之间的最短路径就是在 stack[n][m] 中

}

还有一种方法就是用Depth First Search递归式的寻找路径,不过这样比较慢,而且我的代码可能会造成stack overflow

public Stack dfs(Vertex 当前景点,Vertex 目标景点){

if(当前景点 == 目标景点) return;

Stack solution = new Stack();

Stack temp;

for (相邻于 点钱景点 的每一个 Vertex v){

if (!v.visited){

v.visited = true;

temp = dfs(v, 目标景点);

// 抱歉,不记得是stack.size()还是stack.length()

if (solution.size() == 0) solution = temp;

else if(temp.size() solution.size()) solution = temp;

v.visited = false; 复原

}

}

return solution;

}

然后再在上述的Main中叫dfs...

参考:

贪吃蛇 java代码

自己写着玩的,很简单,你试一试哦...

主要用了javax.swing.Timer这个类:

import java.awt.*;

import javax.swing.*;

@SuppressWarnings("serial")

public class MainClass extends JFrame {

ControlSnake control;

Toolkit kit;

Dimension dimen;

public static void main(String[] args) {

new MainClass("my snake");

}

public MainClass(String s) {

super(s);

control = new ControlSnake();

control.setFocusable(true);

kit = Toolkit.getDefaultToolkit();

dimen = kit.getScreenSize();

add(control);

setLayout(new BorderLayout());

setLocation(dimen.width / 3, dimen.height / 3);// dimen.width/3,dimen.height/3

setSize(FWIDTH, FHEIGHT);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setResizable(false);

setVisible(true);

}

public static final int FWIDTH = 315;

public static final int FHEIGHT = 380;

}

import java.util.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.Timer;

import java.util.Random;

@SuppressWarnings("serial")

public class ControlSnake extends JPanel implements ActionListener {

Random rand;

ArrayListPoint list, listBody;

String str, str1;

static boolean key;

int x, y, dx, dy, fx, fy, flag;

int snakeBody;

int speed;

public ControlSnake() {

snakeBody = 1;

str = "上下左右方向键控制 P键暂停...";

str1 = "现在的长度为:" + snakeBody;

key = true;

flag = 1;

speed = 700;

rand = new Random();

list = new ArrayListPoint();

listBody = new ArrayListPoint();

x = 5;

y = 5;

list.add(new Point(x, y));

listBody.add(list.get(0));

dx = 10;

dy = 0;

fx = rand.nextInt(30) * 10 + 5;// 2

fy = rand.nextInt(30) * 10 + 5;// 2

setBackground(Color.WHITE);

setSize(new Dimension(318, 380));

final Timer time = new Timer(speed, this);

time.start();

addKeyListener(new KeyAdapter() {

public void keyPressed(KeyEvent e) {

if (e.getKeyCode() == 37) {

dx = -10;

dy = 0;

} else if (e.getKeyCode() == 38) {

dx = 0;

dy = -10;

} else if (e.getKeyCode() == 39) {

dx = 10;

dy = 0;

} else if (e.getKeyCode() == 40) {

dx = 0;

dy = 10;

} else if (e.getKeyCode() == 80) {

if (flag % 2 == 1) {

time.stop();

}

if (flag % 2 == 0) {

time.start();

}

flag++;

}

}

});

}

public void paint(Graphics g) {

g.setColor(Color.WHITE);

g.fillRect(0, 0, 400, 400);

g.setColor(Color.DARK_GRAY);

g.drawLine(3, 3, 305, 3);

g.drawLine(3, 3, 3, 305);

g.drawLine(305, 3, 305, 305);

g.drawLine(3, 305, 305, 305);

g.setColor(Color.PINK);

for (int i = 0; i listBody.size(); i++) {

g.fillRect(listBody.get(i).x, listBody.get(i).y, 9, 9);

}

g.fillRect(x, y, 9, 9);

g.setColor(Color.ORANGE);

g.fillRect(fx, fy, 9, 9);

g.setColor(Color.DARK_GRAY);

str1 = "现在的长度为:" + snakeBody;

g.drawString(str, 10, 320);

g.drawString(str1, 10, 335);

}

public void actionPerformed(ActionEvent e) {

x += dx;

y += dy;

if (makeOut() == false) {

JOptionPane.showMessageDialog(null, "重新开始......");

speed = 700;

snakeBody = 1;

x = 5;

y = 5;

list.clear();

list.add(new Point(x, y));

listBody.clear();

listBody.add(list.get(0));

dx = 10;

dy = 0;

}

addPoint(x, y);

if (x == fx y == fy) {

speed = (int) (speed * 0.8);//速度增加参数

if (speed 200) {

speed = 100;

}

fx = rand.nextInt(30) * 10 + 5;// 2

fy = rand.nextInt(30) * 10 + 5;// 2

snakeBody++;// 2

} // 2

repaint();

}

public void addPoint(int xx, int yy) {

// 动态的记录最新发生的50步以内的移动过的坐标

// 并画出最新的snakeBody

if (list.size() 100) {//蛇身长度最长为100

list.add(new Point(xx, yy));

} else {

list.remove(0);

list.add(new Point(xx, yy));

}

if (snakeBody == 1) {

listBody.remove(0);

listBody.add(0, list.get(list.size() - 1));

} else {

listBody.clear();

if (list.size() snakeBody) {

for (int i = list.size() - 1; i 0; i--) {

listBody.add(list.get(i));

}

} else {

for (int i = list.size() - 1; listBody.size() snakeBody; i--) {

listBody.add(list.get(i));

}

}

}

}

public boolean makeOut() {

if ((x 3 || y 3) || (x 305 || y 305)) {

return false;

}

for (int i = 0; i listBody.size() - 1; i++) {

for (int j = i + 1; j listBody.size(); j++) {

if (listBody.get(i).equals(listBody.get(j))) {

return false;

}

}

}

return true;

}

}

Java 鼠标控制人物移动,地图随人物移动

去学习A星寻路,可以得到最短路径,其中也包括了绕开障碍物的代码,然后就是动画的图片切换了,如果说要地图跟随主角移动,那个应该是滚屏操作,也就是说你主角往右走,超过窗口或者屏幕(全屏)坐标一半的时候,地图整个往左移动,速度和主角的一样就出来效果了。如果你看不懂A星的话,那咂就给你一段BFS的C++语言代码,自己转换成JAVA代码写法(就是改些关键字,有不少经典的游戏算法都来自C/C++)就可以了,这个是简化版的A星寻路,一样可以找到最近的路径,你把path 这个路径记录下来再换算成像素位置就可以得到行走的具体步伐了...

#include "stdafx.h"

#include iostream

using namespace std;

const int rows = 10;//行数

const int cols = 10;//列数

const int nummax = 4;//每一步,下一步可以走的方向:4个

//四种移动方向(左、右、上、下)对x、y坐标的影响

//x坐标:竖直方向,y坐标:水平方向

const char dx[nummax] = {0,0,-1,1};

const char dy[nummax] = {-1,1,0,0};

//障碍表

char block[rows][cols] = {

0,1,0,0,0,0,0,0,0,0,

0,1,1,0,1,1,1,0,0,0,

0,0,0,0,0,0,0,0,0,0,

1,0,1,0,0,0,0,0,0,0,

0,0,0,0,0,0,1,1,1,0,

0,1,0,0,0,0,1,0,0,0,

0,0,0,0,0,0,1,1,0,1,

0,1,0,0,0,1,0,1,0,1,

0,1,1,1,0,0,0,1,0,1,

0,0,0,0,0,0,0,0,0,0,

};

char block2[rows][cols] = {

0,1,0,0,0,0,0,0,0,0,

0,1,1,0,1,1,1,0,0,0,

0,0,0,0,0,0,0,0,0,0,

1,0,1,0,0,0,0,0,0,0,

0,0,0,0,0,0,1,1,1,0,

0,1,0,0,0,0,1,0,0,0,

0,0,0,0,0,0,1,1,0,1,

0,1,0,0,0,1,0,1,0,1,

0,1,1,1,0,0,0,1,0,1,

0,0,0,0,0,0,0,0,0,0,

};

char path[rows][cols] = {0};//记录路径

int startX = 0,startY = 0;//起始点坐标

int endX = rows - 1,endY = cols - 1;//目标点坐标

//保存节点位置坐标的数据结构

typedef struct tagQNode{

char x,y;

int parentNode;//父节点索引

}QNode;

//打印路径

void printPath()

{

cout  ""  endl;

for (int i = 0;i  rows;++i)

{

for (int j = 0;j  cols;++j)

{

if (1 == path[i][j])

{

cout  "♀";

}

else if(block2[i][j]==0)

cout  "∷";

else if(block2[i][j]==1)

cout  "■";

}

cout  endl;

}

cout  endl;

cout  endl;

}

void BFS()

{

int num = rows * cols;

//利用数组来模拟队列

QNode *queue = (QNode *)malloc(num * sizeof(QNode));

//起始点入队列

queue[0].x = queue[0].y = 0;

queue[0].parentNode = -1;//起始点没有父节点

int front = 0,rear = 1;//队列的头和尾

while(front != rear)//队列不为空

{

for (int i = 0;i  nummax;++i)

{

char nextX,nextY;//下一步的坐标

nextX = queue[front].x + dx[i];

nextY = queue[front].y + dy[i];

//下一个节点可行

if (nextX = 0  nextX  rows   nextY = 0  nextY  cols   0 == block[nextX][nextY])

{

//寻找到目标点

if (nextX == endX  nextY == endY)

{

//生成路径

path[nextX][nextY] = 1;

int ParIn = front;

while(ParIn != -1)

{

path[queue[ParIn].x][queue[ParIn].y] = 1;

ParIn = queue[ParIn].parentNode;

}

//printPath();

}

//入栈

queue[rear].x = nextX;

queue[rear].y = nextY;

queue[rear].parentNode = front;

++rear;

//标记此点已被访问

block[nextX][nextY] = 1;

}

}

++front;

}

free(queue);

}

int _tmain(int argc, _TCHAR* argv[])

{

BFS();

printPath();

system("pause");

return 0;

}

BFS求源代码及思路?

1、算法用途:

是一种图像搜索演算法。用于遍历图中的节点,有些类似于树的深度优先遍历。这里唯一的问题是,与树不同,图形可能包含循环,因此我们可能会再次来到同一节点。

2、主要思想:

主要借助一个队列、一个布尔类型数组、邻接矩阵完成(判断一个点是否查看过,用于避免重复到达同一个点,造成死循环等),先将各点以及各点的关系存入邻接矩阵。

再从第一个点开始,将一个点存入队列,然后在邻接表中找到他的相邻点,存入队列,每次pop出队列头部并将其打印出来(文字有些抽象,实际过程很简单),整个过程有点像往水中投入石子水花散开。

(邻接表是表示了图中与每一个顶点相邻的边集的集合,这里的集合指的是无序集)

3、代码(java):

(以上图为例的代码)

1 import java.util.*; 2  3 //This class represents a directed graph using adjacency list

4 //representation  5 class Graph1 { 6     private static int V; // No. of vertices 7     private LinkedListInteger a Lists 8  9     // Constructor10     Graph1(int v) {11         V = v;12         adj = new LinkedList[v];13         for (int i = 0; i v; ++i)14             adj[i] = new LinkedList();15     }16 17     // Function to add an edge into the graph18     void addEdge(int v, int w) {19         adj[v].add(w);20     }21 22     // prints BFS traversal from a given source s23     public void BFS() {24         // Mark all the vertices as not visited(By default25         // set as false)26         boolean visited[] = new boolean[V];27         // Create a queue for BFS28         LinkedListInteger queue = new LinkedListInteger();29 30         for (int i = 0; i V; i++) {31             if (!visited[i]) {32                 BFSUtil(i, visited, queue);33             }34         }35     }36 37     public void BFSUtil(int s, boolean visited[], LinkedListInteger queue) {38         // Mark the current node as visited and enqueue it39         visited[s] = true;40         queue.add(s);41 42         while (queue.size() != 0) {43             // Dequeue a vertex from queue and print it44             s = queue.poll();45             System.out.print(s + " ");46 47             // Get all adjacent vertices of the dequeued vertex s48             // If a adjacent has not been visited, then mark it49             // visited and enqueue it50             IteratorInteger i = adj[s].listIterator();51             while (i.hasNext()) {52                 int n = i.next();53                 if (!visited[n]) {54                     visited[n] = true;55                     queue.add(n);56                 }57             }58         }59     }60 61     // Driver method to62     public static void main(String args[]) {63         Graph1 g = new Graph1(4);64 65         g.addEdge(0, 1);66         g.addEdge(0, 2);67         g.addEdge(1, 2);68         g.addEdge(2, 0);69         g.addEdge(2, 3);70         g.addEdge(3, 3);71 72         System.out.println("Following is Breadth First Traversal " + "(starting from vertex 2)");73         g.BFS();74     }75 }

4、复杂度分析:

算法借助了一个邻接表和队列,故它的空问复杂度为O(V)。 遍历图的过程实质上是对每个顶点查找其邻接点的过程,其耗费的时间取决于所采用结构。 邻接表表示时,查找所有顶点的邻接点所需时间为O(E),访问顶点的邻接点所花时间为O(V),此时,总的时间复杂度为O(V+E)。

当前文章:bfsjava代码 javafx代码
路径分享:https://www.cdcxhl.com/article38/ddecipp.html

成都网站建设公司_创新互联,为您提供响应式网站域名注册搜索引擎优化微信公众号网页设计公司网站策划

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

小程序开发