这篇文章给大家分享的是有关python中有没有spark库的内容。小编觉得挺实用的,因此分享给大家做个参考。一起跟随小编过来看看吧。
成都创新互联公司主营梁溪网站建设的网络公司,主营网站建设方案,重庆APP软件开发,梁溪h5重庆小程序开发公司搭建,梁溪网站营销推广欢迎梁溪等地区企业咨询从这个名字pyspark就可以看出来,它是由python和spark组合使用的.
相信你此时已经电脑上已经装载了hadoop,spark,python3.
Spark提供了一个Python_Shell,即pyspark,从而可以以交互的方式使用Python编写Spark程序。
pyspark里最核心的模块是SparkContext(简称sc),最重要的数据载体是RDD。RDD就像一个NumPy array或者一个Pandas Series,可以视作一个有序的item集合。只不过这些item并不存在driver端的内存里,而是被分割成很多个partitions,每个partition的数据存在集群的executor的内存中。
引入Python中pyspark工作模块
import pyspark from pyspark import SparkContext as sc from pyspark import SparkConf conf=SparkConf().setAppName("miniProject").setMaster("local[*]") sc=SparkContext.getOrCreate(conf) #任何Spark程序都是SparkContext开始的,SparkContext的初始化需要一个SparkConf对象,SparkConf包含了Spark集群配置的各种参数(比如主节点的URL)。初始化后,就可以使用SparkContext对象所包含的各种方法来创建和操作RDD和共享变量。Spark shell会自动初始化一个SparkContext(在Scala和Python下可以,但不支持Java)。 #getOrCreate表明可以视情况新建session或利用已有的session
SparkSession是Spark 2.0引入的新概念。
SparkSession为用户提供了统一的切入点,来让用户学习spark的各项功能。 在spark的早期版本中,SparkContext是spark的主要切入点,由于RDD是主要的API,我们通过sparkcontext来创建和操作RDD。对于每个其他的API,我们需要使用不同的context。
例如,对于Streming,我们需要使用StreamingContext;对于sql,使用sqlContext;对于hive,使用hiveContext。但是随着DataSet和DataFrame的API逐渐成为标准的API,就需要为他们建立接入点。所以在spark2.0中,引入SparkSession作为DataSet和DataFrame API的切入点。
SparkSession实质上是SQLContext和HiveContext的组合(未来可能还会加上StreamingContext),所以在SQLContext和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了SparkContext,所以计算实际上是由SparkContext完成的。
感谢各位的阅读!关于python中有没有spark库就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到吧!
本文题目:python中有没有spark库-创新互联
链接URL:https://www.cdcxhl.com/article38/cdospp.html
成都网站建设公司_创新互联,为您提供网站收录、建站公司、定制开发、网站制作、用户体验、企业网站制作
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联