RAII&智能指针

RAII:资源分配及初始化。但是这个翻译并没有显示出这个惯用法的真正内涵。RAII的好处在于它提供了一种资源自动管理的方式,当出现异常,回滚等现象时,RAII可以正确的释放资源。

合山网站建设公司成都创新互联公司,合山网站设计制作,有大型网站制作公司丰富经验。已为合山数千家提供企业网站建设服务。企业网站搭建\外贸网站制作要多少钱,请找那个售后服务好的合山做网站的公司定做!

内存泄漏会导致:

            1.内存耗尽 2.其他程序可能用不了了 3.程序崩溃

在资源的获取和释放之间,我们通常会使用资源,但常常一些不可预计的异常会在资源使用过程中产生,这就使资源没有得到正确的释放。但是我们其实是可以捕捉异常的,但是捕捉异常会使得代码冗余杂乱,量大而且可读性比较低。

比如:

void DoSomething()
{
    int *p=new int(1);
    cout<<"DoSomething()"<<endl;
}

void Test()
{
   try
   {
      DoSomething();
   }
   catch(...)
   {
      delete p;
      throw;
   }
}

这样短短一个代码看起来却很杂乱,而且也不好控制。

所以我们引出了智能指针。智能指针的实现原理就是RAII。

智能指针(smart pointer)是存储指向动态分配(堆)对象指针的类,用于生存期控制,能够确保自动正确的销毁动态分配的对象,防止内存泄露。它的一种通用实现技术是使用引用计数(reference count)。智能指针类将一个计数器与类指向的对象相关联,引用计数跟踪该类有多少个对象共享同一指针。每次创建类的新对象时,初始化指针并将引用计数置为1;当对象作为另一对象的副本而创建时,拷贝构造函数拷贝指针并增加与之相应的引用计数;对一个对象进行赋值时,赋值操作符减少左操作数所指对象的引用计数(如果引用计数为减至0,则删除对象),并增加右操作数所指对象的引用计数;调用析构函数时,构造函数减少引用计数(如果引用计数减至0,则删除基础对象)。

下面介绍几个Boost库中的智能指针。

  1. AutoPtr

AutoPtr的实现主要是管理权转移。它没有考虑引用计数,当用一个对象构造另一个对象时,会转移这种拥有关系。

template<class T>
class AutoPtr
{
	//friend ostream& operator<< <T>(ostream& os, const AutoPtr<T>& ap);
public:
	AutoPtr(T* ptr)
		:_ptr(ptr)
	{}
	~AutoPtr()
	{
		if (_ptr!=NULL)
		{
			delete _ptr;
		}
	}
	AutoPtr(AutoPtr<T>& ap)
		:_ptr(ap._ptr)
	{
		ap._ptr = NULL;
	}
public:
	AutoPtr<T>& operator=(const AutoPtr<T>& ap)
	{
		if (this != ap)
		{
			delete _ptr;
			_ptr = ap._ptr;
			ap._ptr = NULL;
			return _ptr;
		}
	}

	T& operator*()
	{
		return *_ptr;
	}
	T* operator->()
	{
		return _ptr;
	}
public:
	T* GetPtr()
	{
		return _ptr;
	}

private:
	T* _ptr;
};

旧版的AutoPtr在它的成员函数中有一个变量owner,在构架对象的时候owner为true。当用它去构建新的对象时,他自己的owner变为false,新对象的owner为true。赋值重载的时候也是,新对象的owner是true。这样在析构的时候只要判断owner的状态是否为true,当为true时,将这块空间delete即可。

template<class T>
class AutoPtr
{
public:
	AutoPtr(T* ptr)
		:_ptr(ptr)
		, owner(true)
	{}
	~AutoPtr()
	{
		if (owner)
		{
			delete _ptr;
		}
	}
	AutoPtr(AutoPtr<T>& ap)
		:_ptr(ap._ptr)
		, owner(true)
	{
		ap._ptr = NULL;
		ap.owner = false;
	}
public:
	AutoPtr<T>& operator=(const AutoPtr<T>& ap)
	{
		if (this != ap)
		{
			delete _ptr;
			_ptr = ap._ptr;
			ap.owner = false;
			owner = true;
			return _ptr;
		}
	}
}

看起来旧的比新的好。AutoPtr最大的缺点就是只能有一个指针管理一块空间。那么为什么新的还取代了旧的呢?看下面

AutoPtr<int> ap1(new int(1));
 
 if (1)
 
 {
 
  AutoPtr<int> ap2(ap1);
 
 }
 
 *ap1 = 3;

这段代码是用旧版本实现的智能指针(ap1)指向一个动态开辟的内存,然后在if条件语句中又有一个ap2指向这块内存,我们会知道,根据旧版的智能指针的实现原理,ap1的_owner为false,ap2的_owner为true。那么除了if条件语句的局部作用域,ap2就自动调用析构函数释放内存,那么当我们在外面*ap1=3时,访问到的是一块已经被释放了的内存,那么程序这时就会出现问题。

如果是新版的auto_ptr,它提供了一个公有成员函数GetPtr(),可以获取指针_ptr,当发生这种情况时,它可以先判断_ptr是否为空,然后才去访问内存。旧版本这样做是无用的,因为ap1的_ptr并不为空。

2.ScopePtr//守卫指针

这个类型的指针简单来说就是简单粗暴的防拷贝。

template<class T>
class ScopedPtr
{
public:
	ScopedPtr(T* ptr)
		:_ptr(ptr)
	{}
	~ScopedPtr()
	{
		if (_ptr != NULL)
		{
			delete _ptr;
		}
	}
protected:
	ScopedPtr(const ScopedPtr<T>& sp);
	ScopedPtr<T>& operator=(ScopedPtr<T>& sp);
public:
	T& operator*()
	{
		return *_ptr;
	}
	T* operator->()
	{
		return _ptr;
	}

private:
	T* _ptr;
};

将拷贝构造函数和赋值重载函数只声明不实现,而且是Protected.就是为了防止在类外实现的情况发生,简单粗暴哈哈。RAII&智能指针

3.SharedPtr

采用引用计数,构造一个对象时计数器为1,用这个对象去拷贝构造另一个新的对象时,计数器增加1.去赋值给另一个对象时,计数器同样加1.析构时计数器减1.当计数器值为1时,便可delete这块空间。

template<class T>
class SharedPtr
{
public:
	SharedPtr(T* ptr)
		:_ptr(ptr)
		, _pcount(new int(1))
	{}
	~SharedPtr()
	{
		_Release();
	}
	SharedPtr(SharedPtr<T>& sp)
	{
		_ptr = sp._ptr;
		_pcount = sp._pcount;
		(*_pcount)++;
	}
public:
	SharedPtr<T>& operator=(const SharedPtr<T>& sp)
	{
		if (_ptr != sp._ptr)
		{
			_Release();
			_ptr = sp._ptr;
			_pcount = sp._pcount;
			(*_pcount)++;
		}
		return *this;
	}

	T& operator*()
	{
		return *_ptr;
	}
	T* operator->()
	{
		return _ptr;
	}
	long UseCount()
	{

		return *(_pcount);
	}
	T* GetPtr()
	{
		return _ptr;
	}

private:
	T* _ptr;
	int* _pcount;
	Del _del;

	void _Release()
	{
		if (--(*_pcount) == 0)
		{
			_del(_ptr);
			delete(_pcount);
		}
	}
};

在这些指针中最常用到的就是SharedPtr了。但是SharedPtr也存在问题。

  1. 线程安全(这个问题我这个级别还不能很好地解决哈哈。等着我变成大神,就办了它。。。)

  2. 循环引用

    什么是循环引用呢??给小伙伴举个例子来说明一下。

void test2()
{
	SharedPtr<Node> cur(new Node(1));
	SharedPtr<Node> next(new Node(2));
	cur->_next = next;
	next->_prev = cur;
}

struct Node
{
	Node(int d)
	:_data(d)
	, _next(NULL)
	, _prev(NULL)
	{}

	int _data;
	SharedPtr<Node> _next;
	SharedPtr<Node> _prev;
};

int main()
{
	test2();
	getchar();
	return 0;
}

运行这段代码回发现并没有输出。没有输出的原因是  cur,next的引用计数都是2,当出了test2的作用域时,分别调用析构函数,二者的引用计数都减为1.但是cur靠next->_prev指着,next靠cur->_next指着,两个都在等对方先delete自己的引用计数才能减到0,自己才能delete,这就导致二者都不会delete了。要解决这个问题呢,我们就要引用第四种只能指针了。。那就是WeakPtr了。WeakPtr可以说就是为了SharedPtr准备的。因为WeakPtr的构造函数只接受SharedPtr类型的对象。

struct Node
{
	Node(int d)
	:_data(d)
	, _next(NULL)
	, _prev(NULL)
	{}

	int _data;
	WeakPtr<Node> _next;
	WeakPtr<Node> _prev;
};

WeakPtr不增加引用计数。这样next->_prev和cur->_next两个指针就不会增加引用计数,也就不会出现循环引用的问题了。

3.定制删除器

当SharedPtr类型的指针遇到其他有些类型的指针时,它就不行了。。。。哦哦。。为什么说他不行了呢,因为SharedPtr只能解决new 出来的东西。那么对于文件类型的指针呢,malloc出来的东西呢。这就需要我们为他们量身定制解决方法啦。

在这里,又要讲到另外一个知识点了。那就是仿函数。它就是能把对象当做函数调用一样的使用。

template<class T>
struct Less
{
   bool operator()(const T& l,const T& r)
   {
      retrun l>r;
   }
}

int main()
{
   Less less;
   cout<<less(1.2)<<endl;//使用对象去调用类里面的函数
}

接下来就是定制删除器

template<class T ,class Del = Delete<T>>
class SharedPtr
{
public:
	SharedPtr(T* ptr)
		:_ptr(ptr)
		, _pcount(new int(1))
	{}
	SharedPtr(T* ptr,Del del)
		:_ptr(ptr)
		, _pcount(new int(1))
		, _del(del)
	{}
	~SharedPtr()
	{
		_Release();
	}
	SharedPtr(SharedPtr<T,Del>& sp)
	{
		_ptr = sp._ptr;
		_pcount = sp._pcount;
		(*_pcount)++;
	}
public:
	SharedPtr<T, Del>& operator=(const SharedPtr<T, Del>& sp)
	{
		if (_ptr != sp._ptr)
		{
			_Release();
			_ptr = sp._ptr;
			_pcount = sp._pcount;
			(*_pcount)++;
		}
		return *this;
	}

	T& operator*()
	{
		return *_ptr;
	}
	T* operator->()
	{
		return _ptr;
	}
	long UseCount()
	{

		return *(_pcount);
	}
	T* GetPtr()
	{
		return _ptr;
	}

private:
	T* _ptr;
	int* _pcount;
	Del _del;

	void _Release()
	{
		if (--(*_pcount) == 0)
		{
			_del(_ptr);
			delete(_pcount);
		}
	}
};

template<class T>
struct Free                          //free
{
	void operator()(void* ptr)
	{
		cout << "free" << endl;
		free(ptr);
		ptr = NULL;
	}
};

template<class T>
struct Delete                         //delete
{
	void operator()(T* ptr)
	{
		cout << "Del" << endl;
		delete(ptr);
		ptr = NULL;
	}
};

template<class T>
struct Fclose                            //fclose
{
	void operator()(void* ptr)
	{
		cout << "Fclose" << endl;
		fclose((FILE*)ptr);
	}
};

最后我们来总结一下:

  1. AutoPtr   管理权转移-》不要使用

  2. ScopePtr  防拷贝-》简单粗暴

  3. SharedPtr 引用计数-》增减引用计数,最有一个对象释放

  4. xxxArray  管理对象数组-》operator[]

  5. WearPtr   弱指针,辅助SharedPtr.解决循环引用

说了这么多,比较啰嗦哈RAII&智能指针

网页题目:RAII&智能指针
标题链接:https://www.cdcxhl.com/article36/jpjcsg.html

成都网站建设公司_创新互联,为您提供用户体验定制网站面包屑导航自适应网站关键词优化网页设计公司

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

营销型网站建设