python矩阵乘积函数,python中的矩阵乘法

python矩阵乘法是什么?

python实现矩阵乘法的方法

成都创新互联公司专注于网站建设|成都网站改版|优化|托管以及网络推广,积累了大量的网站设计与制作经验,为许多企业提供了网站定制设计服务,案例作品覆盖成都集装箱等行业。能根据企业所处的行业与销售的产品,结合品牌形象的塑造,量身开发品质网站。

def matrixMul(A, B):

res = [[0] * len(B[0]) for i in range(len(A))]

for i in range(len(A)):

for j in range(len(B[0])):

for k in range(len(B)):

res[i][j] += A[i][k] * B[k][j]

return res

def matrixMul2(A, B):

return [[sum(a * b for a, b in zip(a, b)) for b in zip(*B)] for a in A]

a = [[1,2], [3,4], [5,6], [7,8]]

b = [[1,2,3,4], [5,6,7,8]]

print matrixMul(a,b)

print matrixMul(b,a)

乘积形式

除了上述的矩阵乘法以外,还有其他一些特殊的“乘积”形式被定义在矩阵上,值得注意的是,当提及“矩阵相乘”或者“矩阵乘法”的时候,并不是指代这些特殊的乘积形式,而是定义中所描述的矩阵乘法。在描述这些特殊乘积时,使用这些运算的专用名称和符号来避免表述歧义。

python实现矩阵乘法的方法

python实现矩阵乘法的方法

本文实例讲述了python实现矩阵乘法的方法。分享给大家供大家参考。

具体实现方法如下:

def matrixMul(A, B):

res = [[0] * len(B[0]) for i in range(len(A))]

for i in range(len(A)):

for j in range(len(B[0])):

for k in range(len(B)):

res[i][j] += A[i][k] * B[k][j]

return res

def matrixMul2(A, B):

return [[sum(a * b for a, b in zip(a, b)) for b in zip(*B)] for a in A]

a = [[1,2], [3,4], [5,6], [7,8]]

b = [[1,2,3,4], [5,6,7,8]]

print matrixMul(a,b)

print matrixMul(b,a)

print "-"*90

print matrixMul2(a,b)

print matrixMul2(b,a)

print "-"*90

from numpy import dot

print map(list,dot(a,b))

print map(list,dot(b,a))

#Out:

#[[11, 14, 17, 20], [23, 30, 37, 44], [35, 46, 57, 68], [47, 62, 77, 92]]

#[[50, 60], [114, 140]]

#------------------------------------------------------------------------

#[[11, 14, 17, 20], [23, 30, 37, 44], [35, 46, 57, 68], [47, 62, 77, 92]]

#[[50, 60], [114, 140]]

#------------------------------------------------------------------------

#[[11, 14, 17, 20], [23, 30, 37, 44], [35, 46, 57, 68], [47, 62, 77, 92]]

#[[50, 60], [114, 140]]

希望本文所述对大家的Python程序设计有所帮助。

在python3里怎么实现两个矩阵相乘

def mmult(a,b):

zip_b = zip(*b)

return [[sum(ele_a*ele_b for ele_a, ele_b in zip(row_a, col_b))

for col_b in zip_b] for row_a in a]

x = [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]

y = [[1,2],[1,2],[3,4]]

print(mmult(x,y))

或者可以直接用numpy

import numpy as np # I want to check my solution with numpy

mx = np.matrix(x)

my = np.matrix(y)

print(mx * my)

《Python神经网络》3——神经网络矩阵乘法

按照以下图示,最终的神经网络调参,以最简单的3层神经网络为例,公式如下:

    怎么求这个函数的最优解?

如果不试图耍聪明,那么我们可以只是简单地尝试随机组合权重,直到找到好的权重组合。

当陷入一个困难的问题而焦头烂额时,这不算是一个疯狂的想法。这种方法一般称为暴力方法。

暴力方法的不好之处:

假设每个权重在-1和+1之间有1000种可能的值。那么对于3层、每层3个节点的神经网络,可以得到18个权重,因此有18000种可能性需要测试。如果一个相对经典的神经网络,每层有500个节点,那么需要测试5亿种权重的可能性。如果每组组合需要花费1秒钟计算,那么对于一个训练样本,就需要花费16年更新权重!对于1000种训练样本,要花费16000年!       这就是暴力方法不切实际之处。

数学家多年来也未解决这个难题,直到20世纪60年代到70年代,这个难题才有了切实可行的求解办法。

如何解决这样一个明显的难题呢?——我们必须做的第一件事是,拥抱悲观主义。

分享名称:python矩阵乘积函数,python中的矩阵乘法
文章出自:https://www.cdcxhl.com/article36/dsihpsg.html

成都网站建设公司_创新互联,为您提供电子商务网页设计公司虚拟主机企业建站网站设计公司响应式网站

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

手机网站建设