这篇文章主要介绍了opencv python图像轮廓/检测轮廓/绘制轮廓的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
在建始等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都网站制作、网站设计 网站设计制作按需求定制制作,公司网站建设,企业网站建设,高端网站设计,成都营销网站建设,成都外贸网站建设公司,建始网站建设费用合理。图像的轮廓检测,如计算多边形外界、形状毕竟、计算感兴趣区域等。
Contours : Getting Started
轮廓
简单地解释为连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度.
轮廓是形状分析和物体检测和识别的有用工具
NOTE
为获得更好的准确性,请使用二值图,在找到轮廓之前,应用阈值法或canny边缘检测
从OpenCV 3.2开始,findContours()
不再修改源图像,而是将修改后的图像作为三个返回参数中的第一个返回
在OpenCV中,查找轮廓是从黑色背景中查找白色对象
findContours(image, mode, method[, contours[, hierarchy[, offset]]])
image:原图像
mode:轮廓检索模式
method:轮廓近似方法
输出为: 修改后的图像,轮廓,层次结构
轮廓是所有轮廓的列表.每个单独的轮廓是对象边界点的坐标.
轮廓检索模式 | 含义 |
cv2.RETR_EXTERNAL | 只检测外轮廓 |
cv2.RETR_LIST | 提取所有轮廓并将其放入列表,不建立等级关系 |
cv2.RETR_CCOMP | 建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层 |
cv2.RETR_TREE | 建立一个等级树结构的轮廓 |
轮廓逼近方法 | 含义 |
cv2.CHAIN_APPROX_NONE | 存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1 |
cv2.CHAIN_APPROX_SIMPLE | 压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息 |
cv2.CHAIN_APPROX_TC89_L1 或 cv2.CHAIN_APPROX_TC89_KCOS | 应用Teh-Chin链近似算法 |
代码:
import cv2 import numpy as np img = cv2.imread('img.jpg') imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 127, 255, 0) im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
绘制轮廓
cv2.drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]])
image:原图像
contours:作为Python列表传递的轮廓
contourIdx:轮廓索引(在绘制单个轮廓时很有用。绘制所有轮廓,传递-1)
要绘制图像中的所有轮廓:cv.drawContours(img,contours,-1,(0,255,0),3)
要绘制单个轮廓,比如第4个轮廓:cv.drawContours(img,contours,3,(0,255,0),3)
但大多数情况下,绘制第4个轮廓,以下方法将非常有用:cnt = contours[4]
cv.drawContours(img,[cnt],0,(0,255,0),3)
代码:
import cv2 import numpy as np img = cv2.imread('img7.png') imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 127, 255, 0) im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cnt = contours[0] cv2.drawContours(img,[cnt],0,(0,255,0),3) cv2.imshow('src',img) cv2.waitKey()
感谢你能够认真阅读完这篇文章,希望小编分享的“opencv python图像轮廓/检测轮廓/绘制轮廓的示例分析”这篇文章对大家有帮助,同时也希望大家多多支持创新互联成都网站设计公司,关注创新互联成都网站设计公司行业资讯频道,更多相关知识等着你来学习!
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、网站设计器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
本文标题:opencvpython图像轮廓/检测轮廓/绘制轮廓的示例分析-创新互联
文章链接:https://www.cdcxhl.com/article34/joppe.html
成都网站建设公司_创新互联,为您提供定制开发、标签优化、用户体验、营销型网站建设、手机网站建设、网页设计公司
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联