这篇文章给大家分享的是有关python和c++怎么实现旋转矩阵到欧拉角的变换方式的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
创新互联公司专注于企业营销型网站建设、网站重做改版、义马网站定制设计、自适应品牌网站建设、成都h5网站建设、商城系统网站开发、集团公司官网建设、外贸营销网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为义马等各大城市提供网站开发制作服务。在摄影测量学科中,国际摄影测量遵循OPK系统,即是xyz转角系统,而工业中往往使用zyx转角系统。
旋转矩阵的意义:描述相对地面的旋转情况,yaw-pitch-roll对应zyx对应k,p,w
#include <iostream> #include<stdlib.h> #include<eigen3/Eigen/Core> #include<eigen3/Eigen/Dense> #include<stdlib.h> using namespace std; Eigen::Matrix3d rotationVectorToMatrix(Eigen::Vector3d theta) { Eigen::Matrix3d R_x=Eigen::AngleAxisd(theta(0),Eigen::Vector3d(1,0,0)).toRotationMatrix(); Eigen::Matrix3d R_y=Eigen::AngleAxisd(theta(1),Eigen::Vector3d(0,1,0)).toRotationMatrix(); Eigen::Matrix3d R_z=Eigen::AngleAxisd(theta(2),Eigen::Vector3d(0,0,1)).toRotationMatrix(); return R_z*R_y*R_x; } bool isRotationMatirx(Eigen::Matrix3d R) { int err=1e-6;//判断R是否奇异 Eigen::Matrix3d shouldIdenity; shouldIdenity=R*R.transpose(); Eigen::Matrix3d I=Eigen::Matrix3d::Identity(); return (shouldIdenity-I).norm()<err?true:false; } int main(int argc, char *argv[]) { Eigen::Matrix3d R; Eigen::Vector3d theta(rand() % 360 - 180.0, rand() % 360 - 180.0, rand() % 360 - 180.0); theta=theta*M_PI/180; cout<<"旋转向量是:\n"<<theta.transpose()<<endl; R=rotationVectorToMatrix(theta); cout<<"旋转矩阵是:\n"<<R<<endl; if(! isRotationMatirx(R)){ cout<<"旋转矩阵--->欧拉角\n"<<R.eulerAngles(2,1,0).transpose()<<endl;//z-y-x顺序,与theta顺序是x,y,z } else{ assert(isRotationMatirx(R)); } return 0; }
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import cv2 import numpy as np import math import random def isRotationMatrix(R) : Rt = np.transpose(R) shouldBeIdentity = np.dot(Rt, R) I = np.identity(3, dtype = R.dtype) n = np.linalg.norm(I - shouldBeIdentity) return n < 1e-6 def rotationMatrixToEulerAngles(R) : assert(isRotationMatrix(R)) sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0]) singular = sy < 1e-6 if not singular : x = math.atan2(R[2,1] , R[2,2]) y = math.atan2(-R[2,0], sy) z = math.atan2(R[1,0], R[0,0]) else : x = math.atan2(-R[1,2], R[1,1]) y = math.atan2(-R[2,0], sy) z = 0 return np.array([x, y, z]) def eulerAnglesToRotationMatrix(theta) : R_x = np.array([[1, 0, 0 ], [0, math.cos(theta[0]), -math.sin(theta[0]) ], [0, math.sin(theta[0]), math.cos(theta[0]) ] ]) R_y = np.array([[math.cos(theta[1]), 0, math.sin(theta[1]) ], [0, 1, 0 ], [-math.sin(theta[1]), 0, math.cos(theta[1]) ] ]) R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0], [math.sin(theta[2]), math.cos(theta[2]), 0], [0, 0, 1] ]) R = np.dot(R_z, np.dot( R_y, R_x )) return R if __name__ == '__main__' : e = np.random.rand(3) * math.pi * 2 - math.pi R = eulerAnglesToRotationMatrix(e) e1 = rotationMatrixToEulerAngles(R) R1 = eulerAnglesToRotationMatrix(e1) print ("\nInput Euler angles :\n{0}".format(e)) print ("\nR :\n{0}".format(R)) print ("\nOutput Euler angles :\n{0}".format(e1)) print ("\nR1 :\n{0}".format(R1))
感谢各位的阅读!关于“python和c++怎么实现旋转矩阵到欧拉角的变换方式”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
网站题目:python和c++怎么实现旋转矩阵到欧拉角的变换方式-创新互联
转载来于:https://www.cdcxhl.com/article34/docspe.html
成都网站建设公司_创新互联,为您提供商城网站、微信公众号、App开发、移动网站建设、建站公司、品牌网站制作
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联