Numpy中如何实现数组重塑、合并与拆分-创新互联

这篇文章将为大家详细讲解有关Numpy中如何实现数组重塑、合并与拆分,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

成都创新互联是一家从事企业网站建设、网站建设、网站制作、行业门户网站建设、网页设计制作的专业的建站公司,拥有经验丰富的网站建设工程师和网页设计人员,具备各种规模与类型网站建设的实力,在网站建设领域树立了自己独特的设计风格。自公司成立以来曾独立设计制作的站点成百上千。

1.数组重塑

1.1一维数组转变成二维数组

通过reshape( )函数即可实现,假设data是numpy.array类型的一维数组array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),现将其转变为2行5列的二维数组,代码如下:

data.reshape((2,5))

作为参数的形状的其中一维可以是-1,它表示该维度的大小由数据本身推断而来,因此上面代码等价于:

data.reshape((2,-1))

1.2二维数组转换成一维数组

将多维数组转换成一维数组的运算通常称为扁平化(flattening)或散开(raveling),因此有两个函数可供选择。执行代码如下:

data.ravel() # 不会产生源数据的副本
data.flatten() # 总是返回数据的副本

关于这两点的区别,理解的不是很透彻。有人懂得话,欢迎评论交流。

2.数组的合并和拆分

2.1数组的合并

numpy提供许多数组合并的方法,这里只介绍最为常用的一种,即concatenate方法,代码如下:

arr1 = np.array([[1,2,3], [4,5,6]])
arr2 = np.array([[7,8,9], [10,11,12]])
data = np.concatenate([arr1, arr2], axis=0) # axis参数指明合并的轴向,0表示按行,1表示按列

2.2数组的拆分

这里只介绍split函数

np.split(data, [1], axis=0)#data为拆分的数组,[1]为拆分的行号或列号,axis表明按列或者行进行拆分(默认为0,即按行拆分)

关于“Numpy中如何实现数组重塑、合并与拆分”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

网页标题:Numpy中如何实现数组重塑、合并与拆分-创新互联
分享地址:https://www.cdcxhl.com/article34/djecse.html

成都网站建设公司_创新互联,为您提供面包屑导航网站内链网站设计公司企业建站关键词优化网站建设

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

外贸网站建设