mysql怎么复制并行,mysql组提交 并行复制

MySQL5.7特性-多线程复制

DATABASE:默认值,基于库的并行复制方式

公司主营业务:网站设计制作、成都网站建设、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联建站是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联建站推出江川免费做网站回馈大家。

LOGICAL_CLOCK:基于组提交的并行复制方式

mysql show variables like "slave_parallel_type";

mysql show variables like "slave_parallel_workers";

master_info_repository=TABLE #开启MTS 功能后,会频繁更新master.info,设置为TABLE 减小开销

slave_master_info 记录了首次同步master 的位置relay_log_recovery=ON (slave IO 线程crash,如果relay‐log损坏,则自动放弃所有未执行的relay‐log,重新从master 上获取日志,保证relay‐log 的完整性)

slave_preserve_commit_order=ON 在slave 上应用事务的顺序是无序的,和relay log 中记录的事务顺序不一样,这样数据一致性是无法保证的,为了保证事务是按照relay log 中记录的顺序来回放,就需要开启参数slave_preserve_commit_order。

虽然mysql5.7 添加MTS 后,虽然slave 可以并行应用relay log,但commit 部分仍然是顺序提交,其中可能会有等待的情况。

Mysql主从复制方式以及可能出现的问题

大致流程:主库将变更写binlog日志,然后从库连接到主库之后,从库有一个IO线程,将主库的binlog日志拷贝到自己本地,写入一个中继日志 relay日志中。接着从库中有一个SQL线程会从中继日志读取binlog,然后执行binlog日志中的内容,也就是在自己本地再次执行一遍SQL,这样就可以保证自己跟主库的数据是一样的。

如果主库突然宕机,然后恰好数据还没同步到从库,那么有些数据可能在从库上是没有的,这时候从库成为了主库,那么有些数据可能就丢失了。

开启半同步复制 semi-sync ,用来解决主库数据丢失问题;

这个所谓半同步复制, semi-sync复制 ,指的就是主库写入binlog日志之后,就会将强制此时立即将数据同步到从库,从库将日志 写入自己本地的relay log之后 ,接着会 返回一个ack 给主库, 主库接收到至少一个从库的ack之后才会认为写操作完成了。 如果 过程出现失败 ,那么 我们的客户端就可以进行重试了 ;

主从延迟对于读写分离的涉及影响比较大

这里有一个非常重要的一点,就是 从库同步主库数据的过程是串行化的 ,也就是说 主库上并行的操作,在从库上会串行执行 。所以这就是一个非常重要的点了,由于从库从主库拷贝日志以及串行执行SQL的特点,在 高并发场景下,主库大量的写,那么从库的数据一个个的读,那么就会导致从库同步一定会比主库慢一些,是有延时的 。所以经常出现,刚写入主库的数据可能是读不到的,要过几十毫秒,甚至几百毫秒才能读取到。(主库并发写的量级越高,从库积压的同步数据越多,延迟越高)

我们可以用 show status 看看 Seconds_Behind_Master 参数,你可以看到从库复制主库的数据落后了几ms,但是这个也不是完全准确,可以看 Seconds_Behind_Master的

对于解决主从延迟,解决方案可以从以下方面考虑

mySQL如何复制多条记录到另一张表?

一、复制表里面的一条记录并插入表里面\x0d\x0a ① insert into article(title,keywords,desc,contents) select title,keywords,desc,contents from article where article_id = 100;\x0d\x0a\x0d\x0a二、复制表里的多条数据/记录,并插入到表里面\x0d\x0a ① INSERT INTO `power_node`(title,type,status) SELECT title,type,status FROM power_node WHERE id

回答于 2022-11-16

如何复制MySQL数据库或表到另外一台服务器?

使用这种方法前,我们需要先下载一个MySQL客户端工具SqlYog。点击这里下载并安装\x0d\x0a\x0d\x0a下面我们开始复制数据库:\x0d\x0a1、打开SqlYog community Edition,分别在不同的选项卡中打开源数据库服务器与目标数据库服务器,这一点很重。\x0d\x0a\x0d\x0a在源数据库服务器选项卡中你将看到所有数据库列表。\x0d\x0a2、在需要复制迁移的数据库上右击,在弹出菜单中选择“Copy Database to Different Host/Database”\x0d\x0a3、在弹出对话框中,我们能看到源数据库服务器及目标服务器,在左边,通过勾选复选框来选择需要复制迁移的对象,如表、函数、触发器等,也可以选择所有对象。\x0d\x0a4、在右边选择需要迁移的目标服务器或数据库\x0d\x0a5、根据你的需要选择复制类型:“Structure and Data”或“Structure only”,即“结构和数据”或“仅结构”。\x0d\x0a6、选择结束后点击“Copy”按钮开始复制,知道数据迁移结束。

MySQL主从复制之并行复制说明

Coordinator 线程负责判断事务是否可以并行执行,如果可以并行就把事务分发给 WorkThread 线程执行,如果判断不能执行,如 DDL , 跨库操作 等,就等待所有的worker线程执行完成之后,再由 Coordinator 执行。

一组事务同时提交也就意味着组内事务不存在冲突,故组内的事务在从节点上就可以并发执行,问题在于如何区分事务是否在同一组中的,于是在binlog中出现了两个新的参数信息 last_committed 和 sequence_number

Enjoy GreatSQL :)

mysql 核心内容-上

1、SQL语句执行流程

MySQL大体上可分为Server层和存储引擎层两部分。

Server层:

连接器:TCP握手后服务器来验证登陆用户身份,A用户创建连接后,管理员对A用户权限修改了也不会影响到已经创建的链接权限,必须重新登陆。

查询缓存:查询后的结果存储位置,MySQL8.0版本以后已经取消,因为查询缓存失效太频繁,得不偿失。

分析器:根据语法规则,判断你输入的这个SQL语句是否满足MySQL语法。

优化器:多种执行策略可实现目标,系统自动选择最优进行执行。

执行器:判断是否有权限,将最终任务提交到存储引擎。

存储引擎层

负责数据的存储和提取。其架构模式是插件式的,支持InnoDB、MyISAM、Memory等多个存储引擎。现在最常用的存储引擎是InnoDB,它从MySQL 5.5.5版本开始成为了默认存储引擎(经常用的也是这个)。

SQL执行顺序

2、BinLog、RedoLog、UndoLog

BinLog

BinLog是记录所有数据库表结构变更(例如create、alter table)以及表数据修改(insert、update、delete)的二进制日志,主从数据库同步用到的都是BinLog文件。BinLog日志文件有三种模式。

STATEMENT 模式

内容:binlog 记录可能引起数据变更的 sql 语句

优势:该模式下,因为没有记录实际的数据,所以日志量很少 IO 都消耗很低,性能是最优的

劣势:但有些操作并不是确定的,比如 uuid() 函数会随机产生唯一标识,当依赖 binlog 回放时,该操作生成的数据与原数据必然是不同的,此时可能造成无法预料的后果。

ROW 模式

内容:在该模式下,binlog 会记录每次操作的源数据与修改后的目标数据,StreamSets就要求该模式。

优势:可以绝对精准的还原,从而保证了数据的安全与可靠,并且复制和数据恢复过程可以是并发进行的

劣势:缺点在于 binlog 体积会非常大,同时,对于修改记录多、字段长度大的操作来说,记录时性能消耗会很严重。阅读的时候也需要特殊指令来进行读取数据。

MIXED 模式

内容:是对上述STATEMENT 跟 ROW 两种模式的混合使用。

细节:对于绝大部分操作,都是使用 STATEMENT 来进行 binlog 没有记录,只有以下操作使用 ROW 来实现:表的存储引擎为 NDB,使用了uuid() 等不确定函数,使用了 insert delay 语句,使用了临时表

主从同步流程:

1、主节点必须启用二进制日志,记录任何修改了数据库数据的事件。

2、从节点开启一个线程(I/O Thread)把自己扮演成 mysql 的客户端,通过 mysql 协议,请求主节点的二进制日志文件中的事件 。

3、主节点启动一个线程(dump Thread),检查自己二进制日志中的事件,跟对方请求的位置对比,如果不带请求位置参数,则主节点就会从第一个日志文件中的第一个事件一个一个发送给从节点。

4、从节点接收到主节点发送过来的数据把它放置到中继日志(Relay log)文件中。并记录该次请求到主节点的具体哪一个二进制日志文件内部的哪一个位置(主节点中的二进制文件会有多个)。

5、从节点启动另外一个线程(sql Thread ),把 Relay log 中的事件读取出来,并在本地再执行一次。

mysql默认的复制方式是异步的,并且复制的时候是有并行复制能力的。主库把日志发送给从库后不管了,这样会产生一个问题就是假设主库挂了,从库处理失败了,这时候从库升为主库后,日志就丢失了。由此产生两个概念。

全同步复制

主库写入binlog后强制同步日志到从库,所有的从库都执行完成后才返回给客户端,但是很显然这个方式的话性能会受到严重影响。

半同步复制

半同步复制的逻辑是这样,从库写入日志成功后返回ACK确认给主库,主库收到至少一个从库的确认就认为写操作完成。

还可以延伸到由于主从配置不一样、主库大事务、从库压力过大、网络震荡等造成主备延迟,如何避免这个问题?主备切换的时候用可靠性优先原则还是可用性优先原则?如何判断主库Crash了?互为主备的情况下如何避免主备循环复制?被删库跑路了如何正确恢复?( o )… 感觉越来越扯到DBA的活儿上去了。

RedoLog

可以先通过下面demo理解:

饭点记账可以把账单写在账本上也可以写在粉板上。有人赊账或者还账的话,一般有两种做法:

1、直接把账本翻出来,把这次赊的账加上去或者扣除掉。

2、先在粉板上记下这次的账,等打烊以后再把账本翻出来核算。

生意忙时选后者,因为前者太麻烦了。得在密密麻麻的记录中找到这个人的赊账总额信息,找到之后再拿出算盘计算,最后再将结果写回到账本上。

同样在MySQL中如果每一次的更新操作都需要写进磁盘,然后磁盘也要找到对应的那条记录,然后再更新,整个过程IO成本、查找成本都很高。而粉板和账本配合的整个过程就是MySQL用到的是Write-Ahead Logging 技术,它的关键点就是先写日志,再写磁盘。此时账本 = BinLog,粉板 = RedoLog。

1、 记录更新时,InnoDB引擎就会先把记录写到RedoLog(粉板)里面,并更新内存。同时,InnoDB引擎会在空闲时将这个操作记录更新到磁盘里面。

2、 如果更新太多RedoLog处理不了的时候,需先将RedoLog部分数据写到磁盘,然后擦除RedoLog部分数据。RedoLog类似转盘。

RedoLog有write pos 跟checkpoint

write pos :是当前记录的位置,一边写一边后移,写到第3号文件末尾后就回到0号文件开头。

check point:是当前要擦除的位置,也是往后推移并且循环的,擦除记录前要把记录更新到数据文件。

write pos和check point之间的是粉板上还空着的部分,可以用来记录新的操作。如果write pos追上checkpoint,表示粉板满了,这时候不能再执行新的更新,得停下来先擦掉一些记录,把checkpoint推进一下。

有了redo log,InnoDB就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为crash-safe。 redolog两阶段提交:为了让binlog跟redolog两份日志之间的逻辑一致。提交流程大致如下:

1 prepare阶段 -- 2 写binlog -- 3 commit

当在2之前崩溃时,重启恢复后发现没有commit,回滚。备份恢复:没有binlog 。一致

当在3之前崩溃时,重启恢复发现虽没有commit,但满足prepare和binlog完整,所以重启后会自动commit。备份:有binlog. 一致

binlog跟redolog区别:

redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。

redo log是物理日志,记录的是在某个数据页上做了什么修改;binlog是逻辑日志,记录的是这个语句的原始逻辑,比如给ID=2这一行的c字段加1。

redo log是循环写的,空间固定会用完;binlog是可以追加写入的。追加写是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。

UndoLog

UndoLog 一般是逻辑日志,主要分为两种:

insert undo log

代表事务在insert新记录时产生的undo log, 只在事务回滚时需要,并且在事务提交后可以被立即丢弃

update undo log

事务在进行update或delete时产生的undo log; 不仅在事务回滚时需要,在快照读时也需要;所以不能随便删除,只有在快速读或事务回滚不涉及该日志时,对应的日志才会被purge线程统一清除

3、MySQL中的索引

索引的常见模型有哈希表、有序数组和搜索树。

哈希表:一种以KV存储数据的结构,只适合等值查询,不适合范围查询。

有序数组:只适用于静态存储引擎,涉及到插入的时候比较麻烦。可以参考Java中的ArrayList。

搜索树:按照数据结构中的二叉树来存储数据,不过此时是N叉树(B+树)。广泛应用在存储引擎层中。

B+树比B树优势在于:

B+ 树非叶子节点存储的只是索引,可以存储的更多。B+树比B树更加矮胖,IO次数更少。

B+ 树叶子节点前后管理,更加方便范围查询。同时结果都在叶子节点,查询效率稳定。

B+树中更有利于对数据扫描,可以避免B树的回溯扫描。

索引的优点:

1、唯一索引可以保证每一行数据的唯一性

2、提高查询速度

3、加速表与表的连接

4、显著的减少查询中分组和排序的时间

5、通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。

索引的缺点:

1、创建跟维护都需要耗时

2、创建索引时,需要对表加锁,在锁表的同时,可能会影响到其他的数据操作

3、 索引需要磁盘的空间进行存储,磁盘占用也很快。

4、当对表中的数据进行CRUD的时,也会触发索引的维护,而维护索引需要时间,可能会降低数据操作性能

索引设计的原则不应该:

1、索引不是越多越好。索引太多,维护索引需要时间跟空间。

2、 频繁更新的数据,不宜建索引。

3、数据量小的表没必要建立索引。

应该:

1、重复率小的列建议生成索引。因为重复数据少,索引树查询更有效率,等价基数越大越好。

2、数据具有唯一性,建议生成唯一性索引。在数据库的层面,保证数据正确性

3、频繁group by、order by的列建议生成索引。可以大幅提高分组和排序效率

4、经常用于查询条件的字段建议生成索引。通过索引查询,速度更快

索引失效的场景

1、模糊搜索:左模糊或全模糊都会导致索引失效,比如'%a'和'%a%'。但是右模糊是可以利用索引的,比如'a%' 。

2、隐式类型转换:比如select * from t where name = xxx , name是字符串类型,但是没有加引号,所以是由MySQL隐式转换的,所以会让索引失效 3、当语句中带有or的时候:比如select * from t where name=‘sw’ or age=14

4、不符合联合索引的最左前缀匹配:(A,B,C)的联合索引,你只where了C或B或只有B,C

关于索引的知识点:

主键索引:主键索引的叶子节点存的是整行数据信息。在InnoDB里,主键索引也被称为聚簇索引(clustered index)。主键自增是无法保证完全自增的哦,遇到唯一键冲突、事务回滚等都可能导致不连续。

唯一索引:以唯一列生成的索引,该列不允许有重复值,但允许有空值(NULL)

普通索引跟唯一索引查询性能:InnoDB的数据是按数据页为单位来读写的,默认每页16KB,因此这两种索引查询数据性能差别微乎其微。

change buffer:普通索引用在更新过程的加速,更新的字段如果在缓存中,如果是普通索引则直接更新即可。如果是唯一索引需要将所有数据读入内存来确保不违背唯一性,所以尽量用普通索引。

非主键索引:非主键索引的叶子节点内容是主键的值。在InnoDB里,非主键索引也被称为二级索引(secondary index)

回表:先通过数据库索引扫描出数据所在的行,再通过行主键id取出索引中未提供的数据,即基于非主键索引的查询需要多扫描一棵索引树。

覆盖索引:如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为覆盖索引。

联合索引:相对单列索引,组合索引是用多个列组合构建的索引,一次性最多联合16个。

最左前缀原则:对多个字段同时建立的组合索引(有顺序,ABC,ACB是完全不同的两种联合索引) 以联合索引(a,b,c)为例,建立这样的索引相当于建立了索引a、ab、abc三个索引。另外组合索引实际还是一个索引,并非真的创建了多个索引,只是产生的效果等价于产生多个索引。

索引下推:MySQL 5.6引入了索引下推优化,可以在索引遍历过程中,对索引中包含的字段先做判断,过滤掉不符合条件的记录,减少回表字数。

索引维护:B+树为了维护索引有序性涉及到页分裂跟页合并。增删数据时需考虑页空间利用率。

自增主键:一般会建立与业务无关的自增主键,不会触发叶子节点分裂。

延迟关联:通过使用覆盖索引查询返回需要的主键,再根据主键关联原表获得需要的数据。

InnoDB存储: * .frm文件是一份定义文件,也就是定义数据库表是一张怎么样的表。*.ibd文件则是该表的索引,数据存储文件,既该表的所有索引树,所有行记录数据都存储在该文件中。

MyISAM存储:* .frm文件是一份定义文件,也就是定义数据库表是一张怎么样的表。* .MYD文件是MyISAM存储引擎表的所有行数据的文件。* .MYI文件存放的是MyISAM存储引擎表的索引相关数据的文件。MyISAM引擎下,表数据和表索引数据是分开存储的。

MyISAM查询:在MyISAM下,主键索引和辅助键索引都属于非聚簇索引。查询不管是走主键索引,还是非主键索引,在叶子结点得到的都是目的数据的地址,还需要通过该地址,才能在数据文件中找到目的数据。

PS:InnoDB支持聚簇索引,MyISAM不支持聚簇索引

4、SQL事务隔离级别

ACID的四个特性

原子性(Atomicity):把多个操作放到一个事务中,保证这些操作要么都成功,要么都不成功

一致性(Consistency):理解成一串对数据进行操作的程序执行下来,不会对数据产生不好的影响,比如凭空产生,或消失

隔离性(Isolation,又称独立性):隔离性的意思就是多个事务之间互相不干扰,即使是并发事务的情况下,他们只是两个并发执行没有交集,互不影响的东西;当然实现中,也不一定需要这么完整隔离性,即不一定需要这么的互不干扰,有时候还是允许有部分干扰的。所以MySQL可以支持4种事务隔离性

持久性(Durability):当某个操作操作完毕了,那么结果就是这样了,并且这个操作会持久化到日志记录中

PS:ACID中C与CAP定理中C的区别

ACID的C着重强调单数据库事务操作时,要保证数据的完整和正确性,数据不会凭空消失跟增加。CAP 理论中的C指的是对一个数据多个备份的读写一致性

事务操作可能会出现的数据问题

1、脏读(dirty read):B事务更改数据还未提交,A事务已经看到并且用了。B事务如果回滚,则A事务做错了

2、 不可重复读(non-repeatable read):不可重复读的重点是修改: 同样的条件, 你读取过的数据, 再次读取出来发现值不一样了,只需要锁住满足条件的记录

3、 幻读(phantom read):事务A先修改了某个表的所有纪录的状态字段为已处理,未提交;事务B也在此时新增了一条未处理的记录,并提交了;事务A随后查询记录,却发现有一条记录是未处理的造成幻读现象,幻读仅专指新插入的行。幻读会造成语义上的问题跟数据一致性问题。

4、 在可重复读RR隔离级别下,普通查询是快照读,是不会看到别的事务插入的数据的。因此,幻读在当前读下才会出现。要用间隙锁解决此问题。

在说隔离级别之前,你首先要知道,你隔离得越严实,效率就会越低。因此很多时候,我们都要在二者之间寻找一个平衡点。SQL标准的事务隔离级别由低到高如下: 上图从上到下的模式会导致系统的并行性能依次降低,安全性依次提高。

读未提交:别人改数据的事务尚未提交,我在我的事务中也能读到。

读已提交(Oracle默认):别人改数据的事务已经提交,我在我的事务中才能读到。

可重复读(MySQL默认):别人改数据的事务已经提交,我在我的事务中也不去读,以此保证重复读一致性。

串行:我的事务尚未提交,别人就别想改数据。

标准跟实现:上面都是关于事务的标准,但是每一种数据库都有不同的实现,比如MySQL InnDB 默认为RR级别,但是不会出现幻读。因为当事务A更新了所有记录的某个字段,此时事务A会获得对这个表的表锁,因为事务A还没有提交,所以事务A获得的锁没有释放,此时事务B在该表插入新记录,会因为无法获得该表的锁,则导致插入操作被阻塞。只有事务A提交了事务后,释放了锁,事务B才能进行接下去的操作。所以可以说 MySQL的RR级别的隔离是已经实现解决了脏读,不可重复读和幻读的。

5、MySQL中的锁

无论是Java的并发编程还是数据库的并发操作都会涉及到锁,研发人员引入了悲观锁跟乐观锁这样一种锁的设计思想。

悲观锁:

优点:适合在写多读少的并发环境中使用,虽然无法维持非常高的性能,但是在乐观锁无法提更好的性能前提下,可以做到数据的安全性

缺点:加锁会增加系统开销,虽然能保证数据的安全,但数据处理吞吐量低,不适合在读书写少的场合下使用

乐观锁:

优点:在读多写少的并发场景下,可以避免数据库加锁的开销,提高DAO层的响应性能,很多情况下ORM工具都有带有乐观锁的实现,所以这些方法不一定需要我们人为的去实现。

缺点:在写多读少的并发场景下,即在写操作竞争激烈的情况下,会导致CAS多次重试,冲突频率过高,导致开销比悲观锁更高。

实现:数据库层面的乐观锁其实跟CAS思想类似, 通数据版本号或者时间戳也可以实现。

数据库并发场景主要有三种:

读-读:不存在任何问题,也不需要并发控制

读-写:有隔离性问题,可能遇到脏读,幻读,不可重复读

写-写:可能存更新丢失问题,比如第一类更新丢失,第二类更新丢失

两类更新丢失问题:

第一类更新丢失:事务A的事务回滚覆盖了事务B已提交的结果 第二类更新丢失:事务A的提交覆盖了事务B已提交的结果

为了合理贯彻落实锁的思想,MySQL中引入了杂七杂八的各种锁:

锁分类

MySQL支持三种层级的锁定,分别为

表级锁定

MySQL中锁定粒度最大的一种锁,最常使用的MYISAM与INNODB都支持表级锁定。

页级锁定

是MySQL中锁定粒度介于行级锁和表级锁中间的一种锁,表级锁速度快,但冲突多,行级冲突少,但速度慢。所以取了折衷的页级,一次锁定相邻的一组记录。

行级锁定

Mysql中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突。其加锁粒度最小,但加锁的开销也最大行级锁不一定比表级锁要好:锁的粒度越细,代价越高,相比表级锁在表的头部直接加锁,行级锁还要扫描找到对应的行对其上锁,这样的代价其实是比较高的,所以表锁和行锁各有所长。

MyISAM中的锁

虽然MySQL支持表,页,行三级锁定,但MyISAM存储引擎只支持表锁。所以MyISAM的加锁相对比较开销低,但数据操作的并发性能相对就不高。但如果写操作都是尾插入,那还是可以支持一定程度的读写并发

从MyISAM所支持的锁中也可以看出,MyISAM是一个支持读读并发,但不支持通用读写并发,写写并发的数据库引擎,所以它更适合用于读多写少的应用场合,一般工程中也用的较少。

InnoDB中的锁

该模式下支持的锁实在是太多了,具体如下:

共享锁和排他锁 (Shared and Exclusive Locks)

意向锁(Intention Locks)

记录锁(Record Locks)

间隙锁(Gap Locks)

临键锁 (Next-Key Locks)

插入意向锁(Insert Intention Locks)

主键自增锁 (AUTO-INC Locks)

空间索引断言锁(Predicate Locks for Spatial Indexes)

举个栗子,比如行锁里的共享锁跟排它锁:lock in share modle 共享读锁:

为了确保自己查到的数据没有被其他的事务正在修改,也就是说确保查到的数据是最新的数据,并且不允许其他人来修改数据。但是自己不一定能够修改数据,因为有可能其他的事务也对这些数据使用了 in share mode 的方式上了S 锁。如果不及时的commit 或者rollback 也可能会造成大量的事务等待。

for update排它写锁:

为了让自己查到的数据确保是最新数据,并且查到后的数据只允许自己来修改的时候,需要用到for update。相当于一个 update 语句。在业务繁忙的情况下,如果事务没有及时的commit或者rollback 可能会造成其他事务长时间的等待,从而影响数据库的并发使用效率。

Gap Lock间隙锁:

1、行锁只能锁住行,如果在记录之间的间隙插入数据就无法解决了,因此MySQL引入了间隙锁(Gap Lock)。间隙锁是左右开区间。间隙锁之间不会冲突。

2、间隙锁和行锁合称NextKeyLock,每个NextKeyLock是前开后闭区间。

间隙锁加锁原则(学完忘那种):

1、加锁的基本单位是 NextKeyLock,是前开后闭区间。

2、查找过程中访问到的对象才会加锁。

3、索引上的等值查询,给唯一索引加锁的时候,NextKeyLock退化为行锁。

4、索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,NextKeyLock退化为间隙锁。

5、唯一索引上的范围查询会访问到不满足条件的第一个值为止。

本文标题:mysql怎么复制并行,mysql组提交 并行复制
当前链接:https://www.cdcxhl.com/article28/dsggdjp.html

成都网站建设公司_创新互联,为您提供品牌网站建设App设计软件开发动态网站网站维护移动网站建设

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

h5响应式网站建设