这篇文章主要为大家展示了“hadoop中mapreducez如何自定义分区”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“hadoop中mapreducez如何自定义分区”这篇文章吧。
创新互联-专业网站定制、快速模板网站建设、高性价比蔡甸网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式蔡甸网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖蔡甸地区。费用合理售后完善,10多年实体公司更值得信赖。package hello_hadoop; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.DoubleWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Partitioner; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class AutoParitionner { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { if(args.length!=2) { System.err.println("Usage: hadoop jar xxx.jar <input path> <output path>"); System.exit(1); } Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "avg of grades"); job.setJarByClass(AutoParitionner.class); job.setMapperClass(PartitionInputClass.class); job.setReducerClass(PartitionOutputClass.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(DoubleWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(DoubleWritable.class); //声明自定义分区的类,下面有类的声明 job.setPartitionerClass(MyPartitioner.class); job.setNumReduceTasks(2); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true)?0:1); } } class PartitionInputClass extends Mapper<LongWritable, Text, Text, DoubleWritable>{ @Override protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, DoubleWritable>.Context context) throws IOException, InterruptedException { String line = value.toString(); if(line.length()>0){ String[] array = line.split("\t"); if(array.length==2){ String name=array[0]; int grade = Integer.parseInt(array[1]); context.write(new Text(name), new DoubleWritable(grade)); } } } } class PartitionOutputClass extends Reducer<Text, DoubleWritable, Text, DoubleWritable>{ @Override protected void reduce(Text text, Iterable<DoubleWritable> iterable, Reducer<Text, DoubleWritable, Text, DoubleWritable>.Context context) throws IOException, InterruptedException { int sum = 0; int cnt= 0 ; for(DoubleWritable iw : iterable) { sum+=iw.get(); cnt++; } context.write(text, new DoubleWritable(sum/cnt)); } } //自定义分区的类 //Partitioner<Text , DoubleWritable > Text,DoubleWirtable分别为map结果的key,value class MyPartitioner extends Partitioner<Text , DoubleWritable >{ @Override public int getPartition(Text text, DoubleWritable value, int numofreuceTask) { String name = text.toString(); if(name.equals("wd")||name.equals("wzf")||name.equals("xzh")||name.equals("zz")) { return 0; }else return 1; } }
以上是“hadoop中mapreducez如何自定义分区”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联-成都网站建设公司行业资讯频道!
分享名称:hadoop中mapreducez如何自定义分区-创新互联
本文地址:https://www.cdcxhl.com/article26/cosejg.html
成都网站建设公司_创新互联,为您提供域名注册、面包屑导航、定制开发、自适应网站、建站公司、App开发
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联