【并发编程十一】c++线程同步——future-创新互联

【并发编程十一】c++线程同步——future
  • 一、互斥
  • 二、条件变量
  • 三、future
    • 1、promise
      • 1.1、子线程设值,主线程获取
      • 1.2、主线程设置值,子线程获取
    • 2、async
      • 2.1、不开新线程的async
      • 2.2、开新线程的async
    • 3、packaged_task
      • 3.1、不使用bind
      • 3.2、提前指定参数
      • 3.3、bind
    • 4、shared_future
  • 四、信号量

简介:
本篇文章,我们详细的介绍下c++标准库提供的线程同步方法中的第3个——future。

为青羊等地区用户提供了全套网页设计制作服务,及青羊网站建设行业解决方案。主营业务为网站设计、做网站、青羊网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!一、互斥

参见【并发编程九】c++线程同步——互斥(mutex)

二、条件变量

参见【并发编程十】c++线程同步——条件变量(condition_variable)

三、future

类模板 std::future 提供访问异步操作结果的机制:

  • (通过std::asyncstd::packaged_taskstd::promise创建的)异步操作能提供一个 std::future 对象给该异步操作的创建者。
  • 然后,异步操作的创建者能用各种方法查询、等待或从 std::future 提取值。若异步操作仍未提供值,则这些方法可能阻塞。
  • 异步操作准备好发送结果给创建者时,它能通过修改链接到创建者的 std::future 的共享状态(例如 std::promise::set_value )进行。

注意, std::future 所引用的共享状态不与另一异步返回对象共享(与 std::shared_future 相反)。

在这里插入图片描述

1、promise
  • 类模板 std::promise 提供存储值或异常的设施,之后通过 std::promise 对象所创建的 std::future 对象异步获得结果。注意 std::promise 只应当使用一次。

备注:简单来说,就是以下过程

  • 1、把promis和future绑定。
  • 2、promise设置值后,
  • 3、future等待,直到获取值。
1.1、子线程设值,主线程获取
  • demo
#include#include#includeusing namespace std;

void task(int a, int b, promise& p)
{p.set_value(a + b);
}
int main()
{// 把promise和future做关联
    promisep;
    futuref=p.get_future();

    thread task1(task,1,2,ref(p));

    //do somesthing

    //get promise value
    f.wait();
    cout<< "return value is "<< f.get()<< '\n';//只能get一次。

    task1.join();
}
  • 输出

在这里插入图片描述

1.2、主线程设置值,子线程获取
  • demo
#include#include#includeusing namespace std;

void task(int a, future& b, promise& p)
{p.set_value(a + b.get());
}
int main()
{// 把promise和future做关联
    promisep_ret;
    futuref_ret=p_ret.get_future();

    promisep_in;
    futuref_in = p_in.get_future();

    thread task1(task,1,ref(f_in),ref(p_ret));

    //do somesthing
    //...
    p_in.set_value(3);

    //get promise value
    f_ret.wait();
    cout<< "return value is "<< f_ret.get()<< '\n';//只能get一次。

    task1.join();
}
  • 输出

在这里插入图片描述

2、async

异步运行一个函数(有可能在新线程中执行),并返回保有其结果的 std::future.

2.1、不开新线程的async
  • demo
#include#include#includeusing namespace std;

int task(int a, int b)
{return a + b;
}


int main()
{// 把async和future做关联
    futuref = async(task, 1, 5);

    //get future value
    f.wait();
    cout<< "return value is "<< f.get()<< '\n';
}
  • 输出

在这里插入图片描述

2.2、开新线程的async
  • launch::async意思是创建新的线程。
  • launch::deferred和不传默认参数是一样的,相当于延时调用。
#include#include#includeusing namespace std;

int task(int a, int b)
{return a + b;
}


int main()
{// 把async和future做关联
    futuref = async(launch::async,task, 1, 5);

    //get future value
    f.wait();
    cout<< "return value is "<< f.get()<< '\n';
}

输出结果和不开线程一样的

3、packaged_task
  • 打包一个函数,存储其返回值以进行异步获取
3.1、不使用bind
  • demo
#include#include#includeusing namespace std;

int task(int a, int b)
{return a + b;
}

int main()
{// 调用packaged_task的构造函数,返回值和两个参数都是int类型,
    packaged_taskt(task);
    //执行
    t(5,5);

    // 把packaged_task和future做关联
    futuref = t.get_future();

    //获取返回值的结果
    f.wait();
    cout<< "return value is "<< f.get()<< '\n';
}

输出

在这里插入图片描述

3.2、提前指定参数
#include#include#includeusing namespace std;

int task(int a, int b)
{return a + b;
}

int main()
{// 调用packaged_task的构造函数,返回值和两个参数都是int类型,
    packaged_taskt(std::bind(task,11,12));
    //执行
    t();

    // 把packaged_task和future做关联
    futureresult = t.get_future();

    //获取返回值的结果
    result.wait();
    cout<< "return value is "<< result.get()<< '\n';
}
  • 输出

在这里插入图片描述

3.3、bind

bind返回参数为std::function

  • demo
#include#include#includeusing namespace std;

int task(int a, int b)
{return a + b;
}

int main()
{// bind返回值为std::function,
    auto a = bind(task, 11, 14);
    //执行
    int result = a();

    cout<< "return value is "<< result<< '\n';
}
  • 输出

在这里插入图片描述

备注:既然bind就可以获取结果,为何还要用packaged_task,当然是因为future啊。

4、shared_future
  • future只能get一次,那如果我们想用使用多次的get呢?———答:使用shared_future。
  • 网上的例子基本都是shared_future和async放在一起使用。
  • 网上并没有shared_future和promise一起使用的例子,所以我们写下后者的例子demo.
#include#include#includeusing namespace std;

mutex mtx;

void task(int a, shared_future& b, promise& p)
{p.set_value(2);
    b.wait();
    int bb = b.get();
    lock_guardguard(mtx);
    cout<< "task b ="<< b.get()<// 把promise和future做关联
    promisep_ret_1,p_ret_2;

    futuref1 = p_ret_1.get_future();
    futuref2 = p_ret_2.get_future();

    promisep_in;
    shared_futures_f = p_in.get_future();

    thread task1(task, 1, ref(s_f), ref(p_ret_1));
    thread task2(task, 2, ref(s_f), ref(p_ret_2));

    //do somesthing
    f1.wait();
    f2.wait();
    //...
    p_in.set_value(3);

    //get promise value
    {lock_guardguard(mtx);
        cout<< "main() return value is "<< f1.get()<< '\n';//只能get一次。
        cout<< "main() return value is "<< f2.get()<< '\n';//只能get一次。
    }

    task1.join();
    task2.join();
}
  • 输出

在这里插入图片描述

参考:
1、https://www.apiref.com/cpp-zh/cpp/thread.html
2、https://en.cppreference.com/w/cpp/thread
3、书籍《c++服务器开发精髓》——张远龙

四、信号量
  • 参见【并发编程十二】c++20线程同步——信号量(semaphore)

你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧

文章题目:【并发编程十一】c++线程同步——future-创新互联
网页链接:https://www.cdcxhl.com/article26/cogdjg.html

成都网站建设公司_创新互联,为您提供网站设计公司静态网站网站改版微信小程序关键词优化品牌网站建设

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

成都app开发公司