linux里jps命令 linux常用命令jps

Spark从入门到精通3:Spark全分布模式的安装和配置

Spark的安装模式一般分为三种:1.伪分布模式:即在一个节点上模拟一个分布式环境,master和worker共用一个节点,这种模式一般用于早大开发和测试Spark程序;2.全分布模式:即真正的集群模式,master和worker部署在不同的节点之上,一般至少需要3个节点(1个master和2个worker),这种模式一般用于实际的生产环境;3.HA集群模式:即高可用集群模式,一般至少需要4台机器(1个主master,1个备master,2个worker),这种模式的优点是在主master宕机之后,备master会立即启动担任master的职责,可以保证集群高效稳定的运行,这种模式就是实际生产环境中多采用的模式。本小节来介绍Spark的全分布模式的安装和陆汪竖配置。

成都创新互联公司从2013年创立,是专业互联网技术服务公司,拥有项目成都网站设计、网站建设网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元遂平做网站,已为上家服务,为遂平各地企业和个人服务,联系电话:18982081108

安装介质:

jdk-8u162-linux-x64.tar.gz 提取码:2bh8

hadoop-2.7.3.tar.gz 提取码:d4g2

scala-2.12.6.tgz 提取码:s2ly

spark-2.1.0-bin-hadoop2.7.tgz 提取码:5kcf

准备3台Linux主机,按照下面的步骤在每台主机上执行一遍,设置成如下结果:

安装Linux操作系统比较简单,这里不再详细。参考:《 Linux从入门到精通1:使用 VMware Workstation 14 Pro 安装 CentOS 7 详细图文教程 》

编辑hosts配置文件:# vi /etc/hosts,追加3行:

测试主机名是否可用:

(1)使用ssh-keygen工具生成秘钥对:

(2)将生成的公钥发给三台主机:master、slave1、slave2:

(3)测试秘钥认证是否成功:

由于各个主机上的时间可能不一致,会导致执行Spark程序出现异常,因此需要同步各个主机的时间。在实际生成环境中,一般使用时间服务器来同步时间,但是搭建时间服务器相对较为复杂。这里介绍一种简单的方法来快速同步每台主机主机的时间。我们知道,使用date命令可以设置主机的时间,因此这里使用putty的插件MTPuTTY来同时向每一台主机发送date命令,以到达同步时间的目的。

(1)使用MTPuTTY工具连接三台主机,点击MTPuTTY工具的Tools菜单下的“Send script…”子菜单,打开发送脚本工具窗口。

(2)输入命令:date -s 2018-05-28,然后回车(注意:一定要回车,否则只发送不执行),在下面服务器列表中选择要同步的主机,然后点击“Send script”,即可将时间同步为2018-05-28 00:00:00。

使用陵启winscp工具将JDK安装包 jdk-8u144-linux-x64.tar.gz 上传到/root/tools/目录中,该目录是事先创建的。

进入/root/tools/目录,将jdk安装包解压到/root/training/目录中,该目录也是事先创建的。

使用winscp工具将Hadoop安装包 hadoop-2.7.3.tar.gz 上传到master节点的/root/tools/目录中,该目录是事先创建的。

进入/root/tools/目录,将hadoop安装包解压到/root/training/目录中,该目录也是事先创建的。

进入Hadoop配置文件目录:

(1) 配置hadoop-env.sh文件:

(2) 配置hdfs-site.xml文件:

(3) 配置core-site.xml文件:

(4) 配置mapred-site.xml文件:

将模板文件mapred-site.xml.template拷贝一份重命名为mapred-site.xml然后编辑:

(5) 配置yarn-site.xml文件:

(6) 配置slaves文件:

将master上配置好的Hadoop安装目录分别复制给两个从节点slave1和slave2,并验证是否成功。

第一次启动需要输入yes继续。

启动成功后,使用jps命令查看各个节点上开启的进程:

使用命令行查看HDFS的状态:

使用浏览器查看HDFS的状态:

使用浏览器查看YARN的状态:

(1) 在HDFS上创建输入目录/input:

(2) 将本地数据文件data.txt上传至该目录:

(3) 进入到Hadoop的示例程序目录:

(4) 执行示例程序中的Wordcount程序,以HDFS上的/input/data.txt作为输入数据,输出结果存放到HDFS上的/out/wc目录下:

(5) 查看进度和结果:

可以通过终端打印出来的日志信息知道执行进度:

执行结束后可以在HDFS上的/out/wc目录下查看是否有_SUCCESS标志文件来判断是否执行成功。

如果执行成功,可以在输出目录下看到_SUCCESS标志文件,且可以在part-r-00000文件中查看到wordcount程序的结果:

由于Scala只是一个应用软件,只需要安装在master节点即可。

使用winscp工具将Scala安装包上传到master节点的/root/tools目录下:

进入/root/tools目录,将Scala安装包解压到安装目录/root/training/:

将Scala的家目录加入到环境变量PATH中:

使环境变量生效:

输入scala命令,如下进入scala环境,则证明scala安装成功:

我们先在master节点上配置好参数,再分发给两个从节点slave1和slave2。

使用winscp工具将Spark安装包上传到master节点的/root/tools目录下:

进入/root/tools目录,将Spark安装包解压到安装目录/root/training/下:

注意:由于Spark的命令脚本和Hadoop的命令脚本有冲突(比如都有start-all.sh和stop-all.sh等),

所以这里需要注释掉Hadoop的环境变量,添加Spark的环境变量:

按Esc:wq保存退出,使用source命令使配置文件立即生效:

进入Spark的配置文件目录下:

(1) 配置spark-env.sh文件:

(2) 配置slaves文件:

将master上配置好的Spark安装目录分别复制给两个从节点slave1和slave2,并验证是否成功。

启动后查看每个节点上的进程:

使用浏览器监控Spark的状态:

使用spark-shell命令进入SparkContext(即Scala环境):

启动了spark-shell之后,可以使用4040端口访问其Web控制台页面(注意:如果一台机器上启动了多个spark-shell,即运行了多个SparkContext,那么端口会自动连续递增,如4041,4042,4043等等):

注意:由于我们将Hadoop从环境变量中注释掉了,这时只能手动进入到Hadoop的sbin目录停止Hadoop:

Spark中常用的端口总结:

Linux系统监控要用到哪些命令

记录一下自己常用的linux系统命令,方便以后查阅,发觉记忆越来越不行了

找到最耗CPU的java线程ps命令

命令:ps -mp pid -o THREAD,tid,time 或者 ps -Lfp pid

结果展示:

这个命令的作用,主要是可以获取到对应一个进程下的线程的一些信息。 比如你想分析一下一个java进程的一些运行瓶颈点,可以通过该命令找到所有当前Thread的占用CPU的时间,也就是这里的最后一列。

比如这里找到了一个TID : 30834 ,所占用的TIME时间最高。

通过 printf "%x\n" 30834 首先转化成16进制, 继续通过jstack命令dump出当前的jvm进程的堆栈信息。 通过Grep命令即可以查到对应16进制的线程id信息,很快就可以找到对应最耗CPU的代码快在哪。

简单的解释下,jstack下这一串线程信息内容:

"DboServiceProcessor-4-thread-295" daemon prio=10 tid=0x00002aab047a9800 nid=0x7d9b waiting on condition [0x0000000046f66000]

nid : 对应的linux操作系统下的tid,就是前面转化的16进制数字

tid: 这个应该是jvm的jmm内存规范中的唯一地址定位,如果你详细分析jvm的一些内存数据时用得上,我自己还没到那种程度,所以先放下

top命令

命令:top -Hp pid

结果显示:

和前面的效果一下,你可以实时喊槐罩的跟踪并获取指定进程中最耗cpu的线程。 再用前面的方法提取到对应的线程堆栈信息。

判断I/O瓶颈

mpstat命令

命令:mpstat -P ALL 1 1000

结果显示:

注意一下这里面的%iowait列,CPU等待I/O操作所花费的时间。这个值持续很高通常可能是I/O瓶颈所导致的。

通过这个参数可以比较直观的看出当前的I/O操作是否存在瓶颈

iostat命令

命令: iostat -m -x 1 1000

同样你可以观察对应的CPU中的%iowait数据,除此之外iostat还提供了一些更详细的I/O状态数据,比如比较重要的有:

avgqu-sz : The average queue length of the requests that were issued to the device. (磁盘队列的请求长度,正常的话2,3比较好。可以和cpu的load一样的理解)

await : The average time (in milliseconds) for I/O requests issued to the device to be served. (代表一个I/O操作从wait到完成的总时间)

svctm和%util都是代表处理该I/O请求花费的时间和CPU的时间比例。 判断是否瓶颈时,这两个参数不是主要的

r/s w/s 和 rMB/s wMB/s 都是代表当前系统处理的I/O的一些状态,前者是我们常说的tps,后者就是吞吐量。这也是评价一个系统的性能指标

pid命令

命令: pidstat -p pid -u -d -t -w -h 1 1000

结果显示:

相当实用的一个命令,可以基于当个进程分析对应的性能数据,包括CPU,I/O,IR , CS等,可以方便开发者更加精细化的观察系统的运行状态。不过郑闹pidstat貌似是在2.6内核的一些较新的版本才有,需要安装sysstat包。

ubuntu下,可以通过sudo apt-get install sysstat进行安装。

sar命令明历

命令:sar -x pid 1 1000

sar也可以指定对应的pid,关注固定的几个参数,没有pidstat那么强大。 看不到对应的I/O, IR等信息。

sar的功能可以覆盖mpstat , iostat的相关功能。

dstat命令

命令:dstat -y --tcp 1 1000

通过dstat --tcp可以比较方便的看到当前的tcp的各种状态,不需要每次netstat -nat去看

其他命令

netstat -natp : 查看对应的网络链接,关注下Recv-Q , Send-Q , State。

lsof -p pid : 查找对应pid的文件句柄

lsof -i : 80 : 查找对应端口被哪个进程占用

lsof /tmp/1.txt :查找对应文件被哪个进程占用

tcpdump / wireshark :抓包分析工具

jstat / jmap / jstack / jps 等一系列的java监控命令

最后

如果你想做一些性能调优的工作,一定要善于利用一些工具进行关注相应的状态。通过linux命令你可以比较方便的观测到CPU , I/O , network等一些比较外围的状态, 很多时候就已经可以解决大部分的问题。jvm内部的一些运行状态监控,得需要借助一些特有的工具进行细粒度的观测。

文章题目:linux里jps命令 linux常用命令jps
网站路径:https://www.cdcxhl.com/article24/dspjjje.html

成都网站建设公司_创新互联,为您提供网站维护网站制作微信小程序云服务器企业网站制作小程序开发

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

营销型网站建设