python算法一:枚举法-创新互联

1.定义:枚举法也称为穷举法,是利用计算机运算速度快、精确度高的特点,对要解决问题的所有可能情况,一个不漏地进行检验,从中找出符合要求的答案,因此枚举法是通过牺牲时间来换取答案的全面性。因此,使用枚举法解决问题时,需要考虑优化算法,选择恰当的枚举对象,尽量分析出问题中的隐含条件,缩小枚举范围,以提高解决问题的效率。
2.一般结构:循环(穷举范围)+判断(检验条件)。

创新互联服务项目包括泾源网站建设、泾源网站制作、泾源网页制作以及泾源网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,泾源网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到泾源省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

例题1:请输出所有的两位偶数。

分析:

穷举范围:两位数范围是10-99。利用range(10,100)可生成10-99的列表

判断条件:偶数满足除以二的余数为0。i%2==0  此条件满足则i为偶数

代码如下:

for i in range(10,100):
    if i%2==0:
        print(i)

例题2:输入一个数,判断该数是否为质数

分析:

穷举范围:n为素数,需要满足n%2!=0,n%3!=0 ... n%n-1!=0,n的除数范围应该为2-n-1。

判断条件:n%i==0 则代表i是n的因数,n不是素数,当穷尽所有的i,该条件都不满足,则n为素数

代码如下:

n=int(input())
for i in range(2,n-1):
    if n%i==0:
        break
else:
    print(n,是素数)

例题3:请输出所有的两位质数

分析:

穷举范围:两位数范围是10-99。利用range(10,100)可生成10-99的列表

判断条件:判断每一个n是否为素数,利用例题2中相关代码

代码如下:

for n in range(10,100):
    for i in range(2,n-1):
        if n%i==0:
            break
    else:
        print(n,"是素数")

另一种做法:

t=0
for n in range(10,100):
    for i in range(2,int(2,int(n**0.5)+1)):
        if n%i==0:
            t=1
            break
if t==1:
    print(n."是素数")
else:
    print(n,“不是素数”)

例题4:这个问题,是我国古代著名趣题之一。 大约在1500年前,《孙子算经》中就记载了这个有趣的问题。 书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足, 问雉兔各几何?这四句话的意思是: 有若干只鸡兔同在一个笼子里,从上面数,有35个头  ;从下面数,有94只脚。求笼中各有几只鸡和兔?

分析:

穷举范围:兔的只数范围为1-34,对应的鸡的只数为34-1

判断条件:根据每组可能解判断兔的只数*4+鸡的只数*2==94是否成立,如果成立,则代表这组可能解成立

代码如下:

for tu in range(1,34):
    ji=34-tu
    if tu*4+ji*2==94:
        print(“兔的只数为”,tu,“鸡的只数为”,ji)

例题5:一个三位数如果满足该数本身=百位上的数字**3+十位数字**3+个位上的数字**3,则该数被称为三位自幂数,也叫作水仙花数。请输出所有的水仙花数。

穷举范围:三位数的范围是100-999。利用range(100,1000)可以生成该列表。

判断条件:该数本身=百位上的数字**3+十位数字**3+个位上的数字**3

代码如下:

for i in range(100,1000):
    bai=i//100
    shi=i//10%10
    ge=i%10
    if bai**3+shi**3+ge**3==i:
        print(i,“是水仙花数”)

例题6:公鸡5元一只,母鸡3元一只,小鸡3只一元, 用100元买一百只鸡。其中公鸡,母鸡,小鸡都必须要有。问公鸡,母鸡,小鸡要买多少只刚好凑足100元

穷举范围:公鸡只数范围是1-20,母鸡只数1-33,小鸡只数1-300

判断条件:公鸡只数+母鸡只数+小鸡只数==100  且  公鸡的钱数+母鸡的钱数+小鸡的钱数==100

代码如下:

for cock_num in range(1,21):          #公鸡只数可能为1-20
    for hen_num in range(1,34):       #母鸡只数可能为1-33
        for chick_num in range(1,101): #(3小鸡)只数可能为1-100
            money1=cock_num*cock_price+hen_num*hen_price+chick_num*threechick_price
            num1=cock_num+hen_num+chick_num*3
            if money1==100 and num1==100:
                print (cock_num,hen_num,chick_num*3) #(③小鸡数)

例题7:输入两个数,求出这两个数的大公约数

穷举范围:大公约数可能是1-两个数中较小的那个

判断条件:这两个数除以大公约数的余数都为0

代码如下:

m=int(input())
n=int(input())
for i in range(min(m,n),0,-1):
    if m%i==0 and n%i==0:
        print(m,"和",n,"的大公约数是",i)

例题8:孪生素数(质数对)

所谓孪生素数指的是间隔为2的两个相邻素数,因为它们之间的距离已经近得不能再近了,如同孪生兄弟一样,故将这一对素数称为孪生素数。显然,最小的一对孪生素数是(1,3)。我们可以写出3~100以内的孪生素数,一共有8对,分别是(3,5),(5,7),(11,13),(17,19),(29,31),(41,43)(59,61)和(71,73)。随着数字的增大,孪生素数的分布也越来越稀疏,人工寻找孪生素数变得非常困难。关于孪生素数还存在着一个著名的猜想——孪生素数猜想,即孪生素数是否有无穷多对,这是数论中还有待解决的一个重要问题。此处我们只讨论在有限范围内的孪生素数求解问题。
问题:编程求出3~1000以内的所有孪生素数。

分析:

在判断孪生素数之前首先需要判断这个数字是否为素数,如果连素数都不是的话也就没有必要再继续去判断了。函数定义如下:

def isprime(n):

    for i in range(2,n-1):
        if n%i==0:
            return False
    else:
        return True

穷举范围:第一个数的范围是2—998,另一个数的范围则是4—1000

判断条件:第一个数和另一个数调用isprime()函数的返回值均为True

def isprime(n):

    for i in range(2,n-1):
        if n%i==0:
            return False
    else:
        return True
#主程序
for i in range(2,999):
    if isprime(i) and isprime(i+2):
        print(i,"和",i+2,"是孪生素数")

例题9:完全数(Perfect number),又称完美数或完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。
如果一个数恰好等于它的因子之和,则称该数为“完全数”。第一个完全数是6,第二个完全数是28,第三个完全数是496,后面的完全数还有8128、33550336等等。

编程1:输入一个数,判断这个数是否是完数。

分析:

利用for循环找到该数的所有因子,求出因子之和。若因子和与该数相等则该数为完数。

n=int(input())
s=0
for i in range(2,n):
    if n%i==0:
        s=s+i
if s==n:
    print(n,"是完数")

编程2:输出1-1000以内所有的完数

分析:

利用编程1自定义一个可以判断该数是否为完数的函数

穷举范围:1-1000

判断条件:该数为完数,则输出

def ws(n):
    s=1
    for i in range(2,n):
        if n%i==0:
            s=s+i
    if s==n:
        return True

#主程序
for i in range(1,1001):
    if ws(i):   
        print(i)

你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧

当前标题:python算法一:枚举法-创新互联
浏览地址:https://www.cdcxhl.com/article24/dcscce.html

成都网站建设公司_创新互联,为您提供微信小程序自适应网站企业建站网站设计公司静态网站手机网站建设

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

绵阳服务器托管