算法设计与分析课后总结-创新互联

算法设计与分析课后总结
  • 算法设计与分析
    • 第1章 算法设计基础
      • 课后习题
    • 第二章算法分析基础
      • 课后习题
        • 1、考虑下面算法,回答下列问题,算法完成什么功能?算法的基本语句时什么?基本语句执行了多少次?
        • 2、分析以下程序段中基本语句的执行次数,要求列出计算公式
        • 3、使用递归扩展技术求解下列公式
    • 第三章 蛮力法
      • 课后习题
        • 1、设计算法,在数组r[n]中删除所有元素值为x的元素,要求时间复杂性为$O(n)$,空间复杂性为$O(1)$
        • 2、设计算法,将数组r[n]中删除重复元素,要求移动次数较少并使剩余元素的相对次序保持不变
        • 3、设表$A=\{a_1,a_2,...,a_n\}$,将A拆成B和C两个表,使A中值>=0的元素存入表B,值小于<0的元素存入表C,不外设空间,利用A的空间
    • 第四章 分治法
      • 课后习题
        • 1、对于待排序列(5,3,1,9)分别画出归并和快排的递归运行轨迹
        • 2、设计分治算法求数组大元素,并分析时间性能
        • 3、在有序序列$(r_1,r_2,...,r_n)$中存在需序号$i(1<=i<=n)$使得$r_i=n$,设计一个分治算法找到这个元素
        • 4、在一个序列中出现次数最多的元素称为众数,寻找众数
    • 第五章 减治法
      • 课后习题
        • 1、折半查找的递归算法,并分析时间性能
        • 2、120硬币问题
    • 第六章 动态规划
      • 课后习题
        • 1、为什么动态规划法需要填表?如何设计表的结构?
        • 2、动态规划求0->12最短路径
    • 第7章 贪心法
      • 课后习题
        • 1.贪心法求背包问题,有7个物品,重量分别为(2,3,5,7,1,4,1),对应价值为(10,5,15,7,6,18,3)背包容量W=15,写出求解过程
        • 2、 最短链接求TSP
        • 3、n个顾客等待问题,使得顾客总等待时间最少
        • 4、17/18、11/12埃及分数问题
    • 第八章 回溯法
      • 课后习题
        • 1、回溯法求解三着色问题
        • 2、回溯法求解作业问题
        • 3、迷宫问题

创新互联主营文昌网站建设的网络公司,主营网站建设方案,App定制开发,文昌h5微信小程序定制开发搭建,文昌网站营销推广欢迎文昌等地区企业咨询算法设计与分析

主要包括课后习题、算法的总结

第1章 算法设计基础 课后习题

1、设计算法求数组的相差最小的两个元素
思路:快排+顺序遍历
快排函数:

int part(int* r, int low, int hight)  
{int i = low, j = hight, pivot = r[low]; 
	while (i< j)
	{while (ipivot) j--;
		if (i< j)	swap(r[i++], r[j]);  
		while (i< j && r[i]<= pivot) 	i++;
		if (i< j)	swap(r[i], r[j--]);  
	}
	return i;  
}
void Quicksort(int* r, int low, int hight)
{int mid;
	if (low< hight)
	{mid = part(r, low, hight);  // 返回基准元素位置
		Quicksort(r, low, mid - 1); // 左区间递归快速排序
		Quicksort(r, mid+1, hight); // 右区间递归快速排序
	}
}

相差最小值的函数:

int Min(int *r,int n)
{Quicksort(r,0,n-1);
	int min=MAX;
	for(int i=1;iif((a[i]-a[i-1])

2、设计算法找出数组a[n]中即不是大,也不是最小的元素
思想:找出3个不相同的数,在三个数中找到中间值即可

int mid(int a,int b,int c)//找三个数的中间值
{if(a>b){if(b>c)return b;
	else if(a>c)return c;
	else return a;
}
else{if(a>c)return a;
	else if(b>c)return c;
	else return b;
}
}

int mid_find(int *r,int n)//找出三个不同的数
{int a=r[0];
	int i=1;
	while(i

3、n至少为多大时,n个1组成的整数能被2013整除
这个题我写着有那么亿丢丢缺点,long long 范围里的数都不能被2013整除
大整数的话,写着又很麻烦。如果有好的想法,欢迎探讨

int main()
{long long n=11111;
	while(n%2013){n*=10;
		n+=1;
	}
	cout<
第二章算法分析基础 课后习题 1、考虑下面算法,回答下列问题,算法完成什么功能?算法的基本语句时什么?基本语句执行了多少次?

(1)

int Stery(int n)
{int S=0;
	for(int i=1;i<=n;i++)
		S+=i*i;
	return S;
}

完成功能:计算 ∑ i = 1 n i 2 \sum_{i=1}^n i^2 ∑i=1n​i2
基本语句:S+=i*i;
算法复杂度: O ( n ) O(n) O(n)
(2)

int Q(int n)
{if(n==1)
		return 1;
	else
		return Q(n-1)+2*n-1;
}

完成功能: ∑ i = 1 n ( 2 n − 1 ) = n 2 \sum_{i=1}^n(2n-1)=n^2 ∑i=1n​(2n−1)=n2
基础语句:2*n-1
时间复杂度: O ( n ) O(n) O(n)

2、分析以下程序段中基本语句的执行次数,要求列出计算公式

(1)

for(i=1;i<=n;i++)
	if(2*i<=n)
		for(j=2*i;j<=n;j++)
			y+=i*j;

基础语句:y+=i*j
执行次数: ∑ i = 1 n / 2 ( n − 2 i ) = n ( n − 2 ) 4 \sum_{i=1}^{n/2}(n-2i)=\frac{n(n-2)}{4} ∑i=1n/2​(n−2i)=4n(n−2)​
时间复杂度: O ( n 2 ) O(n^2) O(n2)
(2)

m=0;
for(i=1;i<=n;i++)
	for(j=1;j<=2*i;j++)
		m+=1;

基础语句:m+=1
执行次数: ∑ i = 1 n 2 i = n ( n + 1 ) \sum_{i=1}^n2i=n(n+1) ∑i=1n​2i=n(n+1)
时间复杂度: O ( n 2 ) O(n^2) O(n2)

3、使用递归扩展技术求解下列公式

(1) T ( n ) = { 4 n = 1 3 T ( n − 1 ) n > 1 T(n) = \begin{cases} 4 &n=1 \\ 3T(n-1) & n>1 \\ \end{cases} T(n)={43T(n−1)​n=1n>1​
解: T ( n ) = 3 T ( n − 1 ) = . . . = 3 n − 1 T ( 1 ) = 4 × 3 n − 1 T(n)=3T(n-1)=...=3^{n-1}T(1)=4×3^{n-1} T(n)=3T(n−1)=...=3n−1T(1)=4×3n−1
(2) T ( n ) = { 1 n = 1 2 T ( n / 3 ) + n n > 1 T(n)= \begin{cases} 1 &n=1\\ 2T(n/3)+n &n>1\\ \end{cases} T(n)={12T(n/3)+n​n=1n>1​
解:令 n = 3 k n=3^k n=3k
T ( n ) = 2 T ( n / 3 ) + n = 2 ( 2 T ( n / 3 2 ) + n / 3 ) + n = . . . = 2 k ∑ i = 0 k ( 3 k / 2 i ) T(n)=2T(n/3)+n=2(2T(n/3^2)+n/3)+n=...=2^k\sum_{i=0}^k(3^k/2^i) T(n)=2T(n/3)+n=2(2T(n/32)+n/3)+n=...=2k∑i=0k​(3k/2i)

第三章 蛮力法 课后习题 1、设计算法,在数组r[n]中删除所有元素值为x的元素,要求时间复杂性为 O ( n ) O(n) O(n),空间复杂性为 O ( 1 ) O(1) O(1)
void dlt(int r*,int n,int x)
{int j=0;
	for(int i=0;iif(r[i]!=x)
		{	r[j]=r[i];
			j++;
		]
	}
}
2、设计算法,将数组r[n]中删除重复元素,要求移动次数较少并使剩余元素的相对次序保持不变

算法思想:双重循环找重复值,将重复元素设置为固定值flag,再用上一题的代码删除即可

void dlt2(int r*,int n)
{flag=-1;
	for(int i=0;iif(i==flag)continue;
		for(int j=i+1;j++)
		{	if(a[i]==a[j])
				a[j]=flag;
		}
	}
	dlt(r,flag);
}
3、设表 A = { a 1 , a 2 , . . . , a n } A=\{a_1,a_2,...,a_n\} A={a1​,a2​,...,an​},将A拆成B和C两个表,使A中值>=0的元素存入表B,值小于<0的元素存入表C,不外设空间,利用A的空间

算法思想:将A分为左边和右边,左边的数大于0,右边的数小于0即可

int divorce(int A*,int n)
{int i=0,j=n-1;
	while(iwhile(A[i]>=0&&i
第四章 分治法 课后习题 1、对于待排序列(5,3,1,9)分别画出归并和快排的递归运行轨迹

归并:
划分阶段:
(5,3,1,9)
(5,3),(1,9)
(5),(3),(1),(9)
归并阶段:
(3,5),(1,9)
(1,3,5,9)
快排:
(5,3,1,9)
5为基准点,将1与5交换
(1,3)5(9)
(1,3,5,9)

2、设计分治算法求数组大元素,并分析时间性能
int Max(int *A,int low,int hight)
{if(low>hight)
		return -1;
	else if(low==hight)return A[low];
	int mid=(low+hight)/2;
	return max(Max(A,low,mid),Max(A,mid+1,hight));
}

算法复杂度: O ( n ) O(n) O(n)

3、在有序序列 ( r 1 , r 2 , . . . , r n ) (r_1,r_2,...,r_n) (r1​,r2​,...,rn​)中存在需序号 i ( 1 < = i < = n ) i(1<=i<=n) i(1<=i<=n)使得 r i = n r_i=n ri​=n,设计一个分治算法找到这个元素
int find(int *A,int low,int height)
{if(low>hight)
		return -1;
	if(low==height)
	{if(A[low]==low) return low;
		else return -1;
	}
	int mid=(low+hight)/2;
	if(A[mid]=mid)
	{return mid;
	}
	else if(A[mid]>mid)
		return find(A,low,mid-1);
	else
	   return find(A,mid+1,height);
}
4、在一个序列中出现次数最多的元素称为众数,寻找众数

算法思想:先快排,再遍历一遍技术,算法复杂度为 O ( n l o g n + n ) = O ( n l o g n ) O(nlogn+n)=O(nlogn) O(nlogn+n)=O(nlogn)
快排函数:

int part(int* r, int low, int hight)  
{int i = low, j = hight, pivot = r[low]; 
	while (i< j)
	{while (ipivot) j--;
		if (i< j)	swap(r[i++], r[j]);  
		while (i< j && r[i]<= pivot) 	i++;
		if (i< j)	swap(r[i], r[j--]);  
	}
	return i;  
}
void Quicksort(int* r, int low, int hight)
{int mid;
	if (low< hight)
	{mid = part(r, low, hight);  // 返回基准元素位置
		Quicksort(r, low, mid - 1); // 左区间递归快速排序
		Quicksort(r, mid+1, hight); // 右区间递归快速排序
	}
}

查找众数函数

int mode(int A*,int n)
{Quicksort(A,0,n-1);
	int Max=0;
	for(int i=0;iint t=a[i];
		int num=0;
		while(i
第五章 减治法 课后习题 1、折半查找的递归算法,并分析时间性能
int divfind(int *A,int low,int hight,int x)
{if(low>height)
		return false;
	mid=(low+height)/2;
	if(A[mid]==x)
		return mid;
	else if(A[mid]>x)
		return divfind(A,low,mid-1);
	else
		return divfind(A,mid+1,height);
}

时间复杂度 O ( l o g 2 n ) O(log_2n) O(log2​n)

2、120硬币问题

我没看懂那个算法,有看懂的大佬麻烦讲一下,比心~
以下为硬币算法的链接:小球称重

第六章 动态规划 课后习题 1、为什么动态规划法需要填表?如何设计表的结构?

动态规划本身是空间换时间,存在表格里,可以减少相同的计算,大大缩短计算时间
表的结构:
一般状态量为表的行
决策量为表的列

2、动态规划求0->12最短路径

Alt
Alt

第7章 贪心法 课后习题 1.贪心法求背包问题,有7个物品,重量分别为(2,3,5,7,1,4,1),对应价值为(10,5,15,7,6,18,3)背包容量W=15,写出求解过程

解题思路:贪心的本质为优先选择单位价值最重的
根据单位价值进行排序得:

物品编号重量价值单位价值
5166
12105
64184.5
35153
7133
2351.7
4771

先装5号物品背包已装容量为1,价值为6
再装1号物品背包已装容量为3,价值为16
装6号物品背包已装容量7,价值为34
装3号物品背包已装容量12,价值为49
装7号物品背包已装容量13,价值为52
装2号物品背包已装容量16>15,结束
最优解为{1,0,1,0,1,1,1}

2、 最短链接求TSP
#include#include#includeusing namespace std;


//查找最小边函数  Search 
pairSearch(int **A,int N,int *flag,int **AF) {//查找最小边

 int min=10e5,a=0,b=0;
 for(int i=0; ifor(int j=0; jif(!AF[i][j]&&flag[i]<2&&flag[j]<2&& A[i][j]//如果这条边没有走过,两边的城市没有同时有两个被走过的边 
    a=i; 
    b=j;
    min=A[i][j];//依次比较 
   }
  }
 }
 flag[a]++;
 flag[b]++;
 AF[a][b]=1;
 return pair(a,b);
}



//TSP2
int TSP2(int **A,int N,int *flag,int **AF) {int tsp=0,i,j,k;
 for(k=0; k//选择N次最短边 
  paira=Search(A,N,flag,AF);
  tsp+=A[a.first][a.second];//每次加入最增的最短边 
 }
 return tsp;
}




int main() 
 { 	//N初始化
	 int N=5; 
 	
	 	
 	//A初始化(城市之间的距离)
 	int **A=(int **)malloc(N*sizeof(int));
	cout<<"输入5个城市之间的距离(0表示城市间不通):"<A[i]=(int*)malloc(N*sizeof(int));
		for(int j=0;j	cin>>A[i][j];
		}
	}		 
	
		
	//AF初始化,记录边是否走过 
	int **AF=(int **)malloc(N*sizeof(int));//记是否边走过,初始值设为0,走过设为1
	for(int i=0;iAF[i]=(int*)malloc(N*sizeof(int));
		for(int j=0;j	AF[i][j]=0;
		}
	}
 	  
 	  
 	//flag初始化,记录城市是否走过 
	int *flag=(int *)malloc(N*sizeof(int));//标记是否城市走过,初始值设为0,走进去又走出来成为2 
    for(int i=0;iflag[i]=0;
	}
	   
	  	  
    cout<<"最短路径长度:";
	cout<
3、n个顾客等待问题,使得顾客总等待时间最少

算法思想:快排一下,时间最少的排前面。

4、17/18、11/12埃及分数问题

埃及分数流程:
E=B/A+1;
输出1/E;
A=AE-B;
B
=E;
消除A,B大公约数;
直到A=1,输出1/B;

第八章 回溯法 课后习题 1、回溯法求解三着色问题 2、回溯法求解作业问题 3、迷宫问题

你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧

名称栏目:算法设计与分析课后总结-创新互联
URL分享:https://www.cdcxhl.com/article22/cddsjc.html

成都网站建设公司_创新互联,为您提供微信小程序建站公司动态网站品牌网站设计静态网站手机网站建设

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联