python函数枚举算法,python中的枚举的定义

python算法问题?

你好,答案如下所示。

成都创新互联公司一直秉承“诚信做人,踏实做事”的原则,不欺瞒客户,是我们最起码的底线! 以服务为基础,以质量求生存,以技术求发展,成交一个客户多一个朋友!为您提供做网站、成都网站建设、成都网页设计、成都小程序开发、成都网站开发、成都网站制作、成都软件开发、成都App制作是成都本地专业的网站建设和网站设计公司,等你一起来见证!

如图所示

希望你能够详细查看。

如果你有不会的,你可以提问

我有时间就会帮你解答。

希望你好好学习。

每一天都过得充实。

Python算法-爬楼梯与递归函数

可以看出来的是,该题可以用斐波那契数列解决。

楼梯一共有n层,每次只能走1层或者2层,而要走到最终的n层。不是从n-1或者就是n-2来的。

F(1) = 1

F(2) = 2

F(n) = F(n-1) + F(n-2) (n=3)

这是递归写法,但是会导致栈溢出。在计算机中,函数的调用是通过栈进行实现的,如果递归调用的次数过多,就会导致栈溢出。

针对这种情况就要使用方法二,改成非递归函数。

将递归进行改写,实现循环就不会导致栈溢出

python求质数的算法

为大家分享了多种方法求质数python实现代码,供大家参考,具体内容如下

题目要求是求所有小于n的质数的个数。

求质数方法1:

穷举法:

根据定义循环判断该数除以比他小的每个自然数(大于1),如果有能被他整除的就不是质数:

def countPrimes1(self, n):

"""

:type n: int

:rtype: int

"""

if n=2:

return 0

else:

res=[]

for i in range(2,n):

flag=0 # 质数标志,=0表示质数

for j in range(2,i):

if i%j ==0:

flag=1

if flag==0:

res.append(i)

return len(res)

求质数方法2:

利用定理:如果一个数是合数,那么它的最小质因数肯定小于等于它的平方根。所以判断一个数是否是质数,只需判断它是否能被小于它开根后的所有数整除。这样做的运算会少很多。

def countPrimes2(self, n):

if n=2:

return 0

else:

res=[]

for i in range(2, n):

flag=0

for j in range(2, int(math.sqrt(i))+1):

if i % j == 0:

flag = 1

if flag == 0:

res.append(i)

return len(res)

求质数方法3:

利用定理:如果一个数是合数,那么它的最小质因数肯定小于等于它的平方根。我们可以发现只要尝试小于等于平方根的所有数即可。列举从 3 到根号x的所有数,还是有些浪费。比如要判断101是否质数,101的根号取整后是10,需要尝试的数是1到10。但是可以发现,对9的尝试是多余的。不能被3整除,必然不能被9整除……顺着这个思路走下去,其实,只要尝试小于根号x的质数即可。而这些质数,恰好前面已经算出来了,已经存在res中了。

def countPrimes3(self, n):

if n = 2:

return 0

else:

res = []

for i in range(2, n):

flag = 0

for j in res:

if i % j == 0:

flag = 1

if flag == 0:

res.append(i)

return len(res)

希望对大家有帮助

网站名称:python函数枚举算法,python中的枚举的定义
网站路径:https://www.cdcxhl.com/article20/heeico.html

成都网站建设公司_创新互联,为您提供用户体验响应式网站微信小程序服务器托管网站建设网站排名

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

h5响应式网站建设