hadoop1.xMapReduce工作原理-创新互联

hadoop1.x  MapReduce工作原理

10年的槐荫网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都全网营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整槐荫建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联公司从事“槐荫网站设计”,“槐荫网站推广”以来,每个客户项目都认真落实执行。

hadoop1.x  MapReduce工作原理

hadoop1.x  MapReduce工作原理

hadoop1.x  MapReduce工作原理

MapReduce 如何解决负载均衡和数据倾斜:

阶段主要出在Map作业结束后,shuffer(洗牌)过程中,如何将map处理后的结果分成多少份,交由Reduce作业,使得每部分reduce作业尽可能均衡处理数据计算。

系统默认将partitions 按照Hash模运算分割(存储对象的hash值与reduce的个数取模),这样很容易出现数据倾斜,导致其中一个reduce作业分得大量数据计算,另一个ruduce作业基本上没有任何数据处理。如何,解决的这种事情,就需要靠程序控制partitions的值

Sort:默认排序是按照字典排序的(按ASCII)

Shuffer阶段比较的操作要执行两次,一次是map task之后的sort另一次是在从本次磁盘将partition数据拷贝到指定reduce 之前的合并,将符合统一范围的key的数据归并

hadoop1.x  MapReduce工作原理

hadoop1.x  MapReduce工作原理

面试:

1.partition:将map输出的数据,按照某种规则将数据划分,分给哪一个reduce,默认使用hash模运算执行

 2.spill:

    过程:map的内存缓存区数据填满时,启动一个单独的线程,将数据按照一定比例写入本地磁盘。

 Sort:将数据按照大小排序(可自定义)默认字典排序

 Combiner:(可有可无)将相同的K_V中的value加起来,减少溢写磁盘的数据

hadoop1.x  MapReduce工作原理

Shuffer的后半过程:

 将map处理后放入map节点的本地磁盘的数据拷贝到rudece节点的内存中 去,数据量少的话,直接交由reduce处理。数据量大的时候,同样需要溢写到磁盘中,按照K值相同的方法进行merge,然后在交由指定的reduce执行

hadoop1.x  MapReduce工作原理

修改默认hdfs的block大小:

这个需要修改hdfs-site.conf配置文件,增加全局参数dfs.block.size。

如下:

修改后参数,

把配置同步到其它节点,并重启hdfs。

hadoop1.x  MapReduce工作原理

hadoop1.x  MapReduce工作原理

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。

本文题目:hadoop1.xMapReduce工作原理-创新互联
文章地址:https://www.cdcxhl.com/article20/dsjijo.html

成都网站建设公司_创新互联,为您提供自适应网站全网营销推广品牌网站制作标签优化网站维护网站建设

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

网站优化排名