python源码,朴素贝叶斯实现多分类

机器学习实战中,朴素贝叶斯那一章节只实现了二分类,网上大多数博客也只是照搬书上的源码,没有弄懂实现的根本。在此梳理了一遍朴素贝叶斯的原理,实现了5分类的例子,也是自己的一点心得,交流一下。

网站制作、做网站服务团队是一支充满着热情的团队,执着、敏锐、追求更好,是创新互联的标准与要求,同时竭诚为客户提供服务是我们的理念。成都创新互联公司把每个网站当做一个产品来开发,精雕细琢,追求一名工匠心中的细致,我们更用心!

from numpy import *

'''

贝叶斯公式 p(ci|w) = p(w|ci)*p(ci) / p(w)

即比较两类别分子大小,把结果归为分子大的一类

p(w|ci)条件概率,即在类别1或0下,w(词频)出现的概率(词频/此类别总词数即n/N)

'''

# 取得DataSet中不重复的word

def createVocabList(dataSet):

vocabSet = set([])#使用set创建不重复词表库

for document in dataSet:

vocabSet = vocabSet | set(document) #创建两个集合的并集

return list(vocabSet)

'''

我们将每个词的出现与否作为一个特征,这可以被描述为词集模型(set-of-words model)。

在词集中,每个词只能出现一次。

'''

def setOfWords2Vec(vocabList, inputSet):

returnVec = [0]*len(vocabList)#创建一个所包含元素都为0的向量

#遍历文档中的所有单词,如果出现了词汇表中的单词,则将输出的文档向量中的对应值设为1

for word in inputSet:

if word in vocabList:

returnVec[vocabList.index(word)] = 1

else: print("the word: %s is not in my Vocabulary!" % word)

return returnVec

'''

如果一个词在文档中出现不止一次,这可能意味着包含该词是否出现在文档中所不能表达的某种信息,

这种方法被称为词袋模型(bag-of-words model)。

在词袋中,每个单词可以出现多次。

为适应词袋模型,需要对函数setOfWords2Vec稍加修改,修改后的函数称为bagOfWords2VecMN

'''

def bagOfWords2Vec(vocabList, inputSet):

returnVec = [0]*len(vocabList)

for word in inputSet:

if word in vocabList:

returnVec[vocabList.index(word)] += 1

return returnVec

def countX(aList,el):

count = 0

for item in aList:

if item == el:

count += 1

return count

def trainNB0(trainMatrix,trainCategory):

'''

trainMatrix:文档矩阵

trainCategory:每篇文档类别标签

'''

numTrainDocs = len(trainMatrix)

numWords = len(trainMatrix[0])

pAbusive0 = countX(trainCategory,0) / float(numTrainDocs)

pAbusive1 = countX(trainCategory,1) / float(numTrainDocs)

pAbusive2 = countX(trainCategory,2) / float(numTrainDocs)

pAbusive3 = countX(trainCategory,3) / float(numTrainDocs)

pAbusive4 = countX(trainCategory,4) / float(numTrainDocs)

#初始化所有词出现数为1,并将分母初始化为2,避免某一个概率值为0

p0Num = ones(numWords); p1Num = ones(numWords)

p2Num = ones(numWords)

p3Num = ones(numWords)

p4Num = ones(numWords)

p0Denom = 2.0; p1Denom = 2.0 ;p2Denom = 2.0

p3Denom = 2.0; p4Denom = 2.0

for i in range(numTrainDocs):

# 1类的矩阵相加

if trainCategory[i] == 1:

p1Num += trainMatrix[i]

p1Denom += sum(trainMatrix[i])

if trainCategory[i] == 2:

p2Num += trainMatrix[i]

p2Denom += sum(trainMatrix[i])

if trainCategory[i] == 3:

p3Num += trainMatrix[i]

p3Denom += sum(trainMatrix[i])

if trainCategory[i] == 4:

p4Num += trainMatrix[i]

p4Denom += sum(trainMatrix[i])

if trainCategory[i] == 0:

p0Num += trainMatrix[i]

p0Denom += sum(trainMatrix[i])

#将结果取自然对数,避免下溢出,即太多很小的数相乘造成的影响

p4Vect = log(p4Num/p4Denom)

p3Vect = log(p3Num/p3Denom)

p2Vect = log(p2Num/p2Denom)

p1Vect = log(p1Num/p1Denom)#change to log()

p0Vect = log(p0Num/p0Denom)#change to log()

return p0Vect,p1Vect,p2Vect,p3Vect,p4Vect,pAbusive0,pAbusive1,pAbusive2,pAbusive3,pAbusive4

def classifyNB(vec2Classify,p0Vec,p1Vec,p2Vec,p3Vec,p4Vec,pClass0,pClass1,pClass2,pClass3,pClass4):

p1 = sum(vec2Classify * p1Vec) + log(pClass1)

p2 = sum(vec2Classify * p2Vec) + log(pClass2)

p3 = sum(vec2Classify * p3Vec) + log(pClass3)

p4 = sum(vec2Classify * p4Vec) + log(pClass4)

p0 = sum(vec2Classify * p0Vec) + log(pClass0)

## print(p0,p1,p2,p3,p4)无锡人流医院 http://www.bhnkyy39.com/

return [p0,p1,p2,p3,p4].index(max([p0,p1,p2,p3,p4]))

if __name__ == "__main__":

dataset = [['my','dog','has','flea','problems','help','please'],

['maybe','not','take','him','to','dog','park','stupid'],

['my','dalmation','is','so','cute','I','love','him'],

['stop','posting','stupid','worthless','garbage'],

['mr','licks','ate','my','steak','how','to','stop','him'],

['quit','buying','worthless','dog','food','stupid'],

['i','love','you'],

['you','kiss','me'],

['hate','heng','no'],

['can','i','hug','you'],

['refuse','me','ache'],

['1','4','3'],

['5','2','3'],

['1','2','3']]

# 0,1,2,3,4分别表示不同类别

classVec = [0,1,0,1,0,1,2,2,4,2,4,3,3,3]

print("正在创建词频列表")

myVocabList = createVocabList(dataset)

print("正在建词向量")

trainMat = []

for postinDoc in dataset:

trainMat.append(setOfWords2Vec(myVocabList,postinDoc))

print("开始训练")

p0V,p1V,p2V,p3V,p4V,pAb0,pAb1,pAb2,pAb3,pAb4 = trainNB0(array(trainMat),array(classVec))

# 输入的测试案例

tmp = ['love','you','kiss','you']

thisDoc = array(setOfWords2Vec(myVocabList,tmp))

flag = classifyNB(thisDoc,p0V,p1V,p2V,p3V,p4V,pAb0,pAb1,pAb2,pAb3,pAb4)

print('flag is',flag)

当前文章:python源码,朴素贝叶斯实现多分类
文章路径:https://www.cdcxhl.com/article2/jgcsic.html

成都网站建设公司_创新互联,为您提供品牌网站制作静态网站网站排名企业网站制作虚拟主机小程序开发

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

h5响应式网站建设