怎么在Pytorch中实现一个GoogLeNet方法-创新互联

今天就跟大家聊聊有关怎么在Pytorch中实现一个GoogLeNet方法,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

成都创新互联是一家专业提供吉利企业网站建设,专注与成都网站建设、做网站H5技术、小程序制作等业务。10年已为吉利众多企业、政府机构等服务。创新互联专业网络公司优惠进行中。pytorch的优点

1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单

GoogLeNet也叫InceptionNet,在2014年被提出,如今已到V4版本。GoogleNet比VGGNet具有更深的网络结构,一共有22层,但是参数比AlexNet要少12倍,但是计算量是AlexNet的4倍,原因就是它采用很有效的Inception模块,并且没有全连接层。

最重要的创新点就在于使用inception模块,通过使用不同维度的卷积提取不同尺度的特征图。左图是最初的Inception模块,右图是使用的1×1得卷积对左图的改进,降低了输入的特征图维度,同时降低了网络的参数量和计算复杂度,称为inception V1。

怎么在Pytorch中实现一个GoogLeNet方法

GoogleNet在架构设计上为保持低层为传统卷积方式不变,只在较高的层开始用Inception模块。

怎么在Pytorch中实现一个GoogLeNet方法

怎么在Pytorch中实现一个GoogLeNet方法

inception V2中将5x5的卷积改为2个3x3的卷积,扩大了感受野,原来是5x5,现在是6x6。Pytorch实现GoogLeNet(inception V2):

'''GoogLeNet with PyTorch.'''
import torch
import torch.nn as nn
import torch.nn.functional as F

# 编写卷积+bn+relu模块
class BasicConv2d(nn.Module):
  def __init__(self, in_channels, out_channals, **kwargs):
    super(BasicConv2d, self).__init__()
    self.conv = nn.Conv2d(in_channels, out_channals, **kwargs)
    self.bn = nn.BatchNorm2d(out_channals)

  def forward(self, x):
    x = self.conv(x)
    x = self.bn(x)
    return F.relu(x)

# 编写Inception模块
class Inception(nn.Module):
  def __init__(self, in_planes,
         n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
    super(Inception, self).__init__()
    # 1x1 conv branch
    self.b1 = BasicConv2d(in_planes, n1x1, kernel_size=1)

    # 1x1 conv -> 3x3 conv branch
    self.b2_1x1_a = BasicConv2d(in_planes, n3x3red, 
                  kernel_size=1)
    self.b2_3x3_b = BasicConv2d(n3x3red, n3x3, 
                  kernel_size=3, padding=1)

    # 1x1 conv -> 3x3 conv -> 3x3 conv branch
    self.b3_1x1_a = BasicConv2d(in_planes, n5x5red, 
                  kernel_size=1)
    self.b3_3x3_b = BasicConv2d(n5x5red, n5x5, 
                  kernel_size=3, padding=1)
    self.b3_3x3_c = BasicConv2d(n5x5, n5x5, 
                  kernel_size=3, padding=1)

    # 3x3 pool -> 1x1 conv branch
    self.b4_pool = nn.MaxPool2d(3, stride=1, padding=1)
    self.b4_1x1 = BasicConv2d(in_planes, pool_planes, 
                 kernel_size=1)

  def forward(self, x):
    y1 = self.b1(x)
    y2 = self.b2_3x3_b(self.b2_1x1_a(x))
    y3 = self.b3_3x3_c(self.b3_3x3_b(self.b3_1x1_a(x)))
    y4 = self.b4_1x1(self.b4_pool(x))
    # y的维度为[batch_size, out_channels, C_out,L_out]
    # 合并不同卷积下的特征图
    return torch.cat([y1, y2, y3, y4], 1)


class GoogLeNet(nn.Module):
  def __init__(self):
    super(GoogLeNet, self).__init__()
    self.pre_layers = BasicConv2d(3, 192, 
                   kernel_size=3, padding=1)

    self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)
    self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)

    self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)

    self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)
    self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)
    self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)
    self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)
    self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)

    self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
    self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)

    self.avgpool = nn.AvgPool2d(8, stride=1)
    self.linear = nn.Linear(1024, 10)

  def forward(self, x):
    out = self.pre_layers(x)
    out = self.a3(out)
    out = self.b3(out)
    out = self.maxpool(out)
    out = self.a4(out)
    out = self.b4(out)
    out = self.c4(out)
    out = self.d4(out)
    out = self.e4(out)
    out = self.maxpool(out)
    out = self.a5(out)
    out = self.b5(out)
    out = self.avgpool(out)
    out = out.view(out.size(0), -1)
    out = self.linear(out)
    return out


def test():
  net = GoogLeNet()
  x = torch.randn(1,3,32,32)
  y = net(x)
  print(y.size())

test()

看完上述内容,你们对怎么在Pytorch中实现一个GoogLeNet方法有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联行业资讯频道,感谢大家的支持。

文章题目:怎么在Pytorch中实现一个GoogLeNet方法-创新互联
URL分享:https://www.cdcxhl.com/article19/cciigh.html

成都网站建设公司_创新互联,为您提供网站排名云服务器网站设计Google电子商务手机网站建设

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

商城网站建设