python指示函数的简单介绍

python主函数怎么写

一般来说,Python程序员可能是这样写main()函数的:

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:主机域名、网页空间、营销软件、网站建设、南县网站维护、网站推广。

"""Module docstring.

This serves as a long usage message.

"""import sysimport getoptdef main():

# parse command line options

try:

opts, args = getopt.getopt(sys.argv[1:], "h", ["help"]) except getopt.error, msg: print msg print "for help use --help"

sys.exit(2) # process options

for o, a in opts: if o in ("-h", "--help"): print __doc__

sys.exit(0) # process arguments

for arg in args:

process(arg) # process() is defined elsewhereif __name__ == "__main__":

main()1234567891011121314151617181920212223242526

Guido也承认之前自己写的main()函数也是类似的结构,但是这样写的灵活性还不够高,尤其是需要解析复杂的命令行选项时。为此,他向大家提出了几点建议。

添加可选的 argv 参数

首先,修改main()函数,使其接受一个可选参数 argv,支持在交互式shell中调用该函数:

def main(argv=None):

if argv is None:

argv = sys.argv # etc., replacing sys.argv with argv in the getopt() call.1234

这样做,我们就可以动态地提供 argv 的值,这比下面这样写更加的灵活:

def main(argv=sys.argv):

# etc.12

这是因为在调用函数时,sys.argv 的值可能会发生变化;可选参数的默认值都是在定义main()函数时,就已经计算好的。

但是现在sys.exit()函数调用会产生问题:当main()函数调用sys.exit()时,交互式解释器就会推出!解决办法是让main()函数的返回值指示退出状态(exit status)。因此,最后面的那行代码就变成了这样:

if __name__ == "__main__":

sys.exit(main())12

并且,main()函数中的sys.exit(n)调用全部变成return n。

定义一个Usage()异常

另一个改进之处,就是定义一个Usage()异常,可以在main()函数最后的except子句捕捉该异常:

import sysimport getoptclass Usage(Exception):

def __init__(self, msg):

self.msg = msgdef main(argv=None):

if argv is None:

argv = sys.argv try: try:

opts, args = getopt.getopt(argv[1:], "h", ["help"]) except getopt.error, msg: raise Usage(msg) # more code, unchanged

except Usage, err: print sys.stderr, err.msg print sys.stderr, "for help use --help"

return 2if __name__ == "__main__":

sys.exit(main())123456789101112131415161718192021222324

这样main()函数就只有一个退出点(exit)了,这比之前两个退出点的做法要好。而且,参数解析重构起来也更容易:在辅助函数中引发Usage的问题不大,但是使用return 2却要求仔细处理返回值传递的问题。

使用Python构造经验累积分布函数(ECDF)

对于一个样本序列 ,经验累积分布函数 (Empirical Cumulative Distribution Function)可被定义为

其中 是一个指示函数,如果 ,指示函数取值为1,否则取值为0,因此 能反映在样本中小于 的元素数量占比。

根据格利文科定理(Glivenko–Cantelli Theorem),如果一个样本满足独立同分布(IID),那么其经验累积分布函数 会趋近于真实的累积分布函数 。

首先定义一个类,命名为ECDF:

我们采用均匀分布(Uniform)进行验证,导入 uniform 包,然后进行两轮抽样,第一轮抽取10次,第二轮抽取1000次,比较输出的结果。

输出结果为:

而我们知道,在真实的0到1均匀分布中, 时, ,从模拟结果可以看出,样本量越大,最终的经验累积分布函数值也越接近于真实的累积分布函数值,因此格利文科定理得以证明。

python中= 和==的区别

在Python中,=是赋值的意思,==是用于判断是否相等。

他们之间的区别就是代表的含义有所不同。

一个等号代表的含义是赋值,将某一个数值赋给某个变量,比如a=3,将3这个数值赋予给a。

两个等号是判断是否相等,返回True和False,比如1==1,他们是相等的,那么就返回true;1==2,他们是不相等的,那么就返回false。

python scikit-learn 有什么算法

1,前言

很久不发文章,主要是Copy别人的总感觉有些不爽,所以整理些干货,希望相互学习吧。不啰嗦,进入主题吧,本文主要时说的为朴素贝叶斯分类算法。与逻辑回归,决策树一样,是较为广泛使用的有监督分类算法,简单且易于理解(号称十大数据挖掘算法中最简单的算法)。但其在处理文本分类,邮件分类,拼写纠错,中文分词,统计机器翻译等自然语言处理范畴较为广泛使用,或许主要得益于基于概率理论,本文主要为小编从理论理解到实践的过程记录。

2,公式推断

一些贝叶斯定理预习知识:我们知道当事件A和事件B独立时,P(AB)=P(A)(B),但如果事件不独立,则P(AB)=P(A)P(B|A)。为两件事件同时发生时的一般公式,即无论事件A和B是否独立。当然也可以写成P(AB)=P(B)P(A|B),表示若要两件事同事发生,则需要事件B发生后,事件A也要发生。

由上可知,P(A)P(B|A)= P(B)P(A|B)

推出P(B|A)=

其中P(B)为先验概率,P(B|A)为B的后验概率,P(A|B)为A的后验概率(在这里也为似然值),P(A)为A的先验概率(在这也为归一化常量)。

由上推导可知,其实朴素贝叶斯法就是在贝叶斯定理基础上,加上特征条件独立假设,对特定输入的X(样本,包含N个特征),求出后验概率最大值时的类标签Y(如是否为垃圾邮件),理解起来比逻辑回归要简单多,有木有,这也是本算法优点之一,当然运行起来由于得益于特征独立假设,运行速度也更快。

. 参数估计

3,参数估计

由上面推断出的公式,我们知道其实朴素贝叶斯方法的学习就是对概率P(Y=ck)和P(X(j)=x(j)|Y=ck)的估计。我们可以用极大似然估计法估计上述先验概率和条件概率。

其中I(x)为指示函数,若括号内成立,则计1,否则为0。李航的课本直接给出了用极大似然(MLE)估计求出的结果,并没给推导过程,

我们知道,贝叶斯较为常见的问题为0概率问题。为此,需要平滑处理,主要使用拉普拉斯平滑,如下所示:

K是类的个数,Sj是第j维特征的最大取值。实际上平滑因子λ=0即为最大似然估计,这时会出现提到的0概率问题;而λ=1则避免了0概率问题,这种方法被称为拉普拉斯平滑。

4,算法流程

5,朴素贝叶斯算法优缺点

优点:朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率

需调参较少,简单高效,尤其是在文本分类/垃圾文本过滤/情感判别等自然语言处理有广泛应用。

在样本量较少情况下,也能获得较好效果,计算复杂度较小,即使在多分类问题。

无论是类别类输入还是数值型输入(默认符合正态分布)都有相应模型可以运用。

缺点:0概率问题,需要平滑处理,通常为拉普拉斯平滑,但加一平滑不一定为效果最好,

朴素贝叶斯有分布独立的假设前提,生活中较少完全独立,在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。

模型注意点:

1, 大家也知道,很多特征是连续数值型的,一般选择使用朴素贝叶斯高斯模型。

2, 为避免0概率事件,记得平滑,简单一点可以用『拉普拉斯平滑』。先处理处理特征,把相关特征去掉,

3, 朴素贝叶斯分类器一般可调参数比较少,需集中精力进行数据的预处理等特征工程工作。

6,Scikit-learn三大朴素贝叶斯模型

Scikit-learn里面有3种不同类型的朴素贝叶斯(:

1, 高斯分布型模型:用于classification问题,假定属性/特征是服从正态分布的,一般用在数值型特征。,

2, 多项式型模型:用于离散值模型里。比如文本分类问题里面我们提到过,我们不光看词语是否在文本中出现,也得看出现的次数。如果总词数为n,出现词数为m的话,说起来有点像掷骰子n次出现m次这个词的场景。

3, 伯努利模型:这种情况下,就如提到的bag ofwords处理方式一样,最后得到的特征只有0(没出现)和1(出现过)。

7. Scikit-learn算法实践

小编通过实现朴素贝叶斯三种模型以及主要分类算法,对比发现跟SVM,随机森林,融合算法相比,贝叶斯差距明显,但其时间消耗要远低于上述算法,以下为主要算法主要评估指标)。

8. Python代码

# -*-coding: utf-8 -*-

importtime

fromsklearn import metrics

fromsklearn.naive_bayes import GaussianNB

fromsklearn.naive_bayes import MultinomialNB

fromsklearn.naive_bayes import BernoulliNB

fromsklearn.neighbors import KNeighborsClassifier

fromsklearn.linear_model import LogisticRegression

fromsklearn.ensemble import RandomForestClassifier

fromsklearn import tree

fromsklearn.ensemble import GradientBoostingClassifier

fromsklearn.svm import SVC

importnumpy as np

importurllib

# urlwith dataset

url ="-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"

#download the file

raw_data= urllib.request.urlopen(url)

#load the CSV file as a numpy matrix

dataset= np.loadtxt(raw_data, delimiter=",")

#separate the data from the target attributes

X =dataset[:,0:7]

#X=preprocessing.MinMaxScaler().fit_transform(x)

#print(X)

y =dataset[:,8]

print("\n调用scikit的朴素贝叶斯算法包GaussianNB ")

model= GaussianNB()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print("\n调用scikit的朴素贝叶斯算法包MultinomialNB ")

model= MultinomialNB(alpha=1)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print("\n调用scikit的朴素贝叶斯算法包BernoulliNB ")

model= BernoulliNB(alpha=1,binarize=0.0)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print("\n调用scikit的KNeighborsClassifier ")

model= KNeighborsClassifier()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print("\n调用scikit的LogisticRegression(penalty='l2') ")

model= LogisticRegression(penalty='l2')

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print("\n调用scikit的RandomForestClassifier(n_estimators=8)  ")

model= RandomForestClassifier(n_estimators=8)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print("\n调用scikit的tree.DecisionTreeClassifier() ")

model= tree.DecisionTreeClassifier()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print("\n调用scikit的GradientBoostingClassifier(n_estimators=200) ")

model= GradientBoostingClassifier(n_estimators=200)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print("\n调用scikit的SVC(kernel='rbf', probability=True) ")

model= SVC(kernel='rbf', probability=True)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

"""

# 预处理代码集锦

importpandas as pd

df=pd.DataFrame(dataset)

print(df.head(3))

print(df.describe())##描述性分析

print(df.corr())##各特征相关性分析

##计算每行每列数据的缺失值个数

defnum_missing(x):

return sum(x.isnull())

print("Missing values per column:")

print(df.apply(num_missing, axis=0)) #axis=0代表函数应用于每一列

print("\nMissing values per row:")

print(df.apply(num_missing, axis=1).head()) #axis=1代表函数应用于每一行"""

python3函数定义的格式问题

-:标记返回函数注释,信息作为.__annotations__属性提供,__annotations__属性是字典。键return是用于在箭头后检索值的键。但是在Python中3.5,PEP 484 - Type Hints附加了一个含义:-用于指示函数返回的类型。它似乎也将在未来版本中强制执行。

eg:

def test() - [1, 2, 3, 4, 5]:

pass

print(test.__annotations__)

输出:

{'return': [1, 2, 3, 4, 5]}

标题名称:python指示函数的简单介绍
浏览路径:https://www.cdcxhl.com/article18/dooeedp.html

成都网站建设公司_创新互联,为您提供面包屑导航响应式网站营销型网站建设小程序开发电子商务标签优化

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

成都定制网站网页设计